
Achtung!
Dies ist eine Internet-Sonderausgabe des Aufsatzes

„Multilingual text retrieval: Requirements and solutions“
von Jost Gippert (1998).

Sie sollte nicht zitiert werden. Zitate sind der Originalausgabe in

Studia Iranica, Mesopotamica et Anatolica 3, 1997 [1998], 75-93
zu entnehmen.

Attention!
This is a special internet edition of the article

“Multilingual text retrieval: Requirements and solutions”
by Jost Gippert (1998).

It should not be quoted as such. For quotations, please refer to the original
edition in Studia Iranica, Mesopotamica et Anatolica 3, 1997 [1998], 75-93.

Alle Rechte vorbehalten / All rights reserved:
Jost Gippert, Frankfurt 1999-2011

Multilingual text retrieval:Requirementsandsolutions

Jost GIPPERT (Frankfurt)

The further development of devices for a multilingual text retrieval is a major
task in the adaptation of computational means to linguistic, literary, and historical
studies. The textual heritage of Old Georgian is an excellent example to show
what should be aimed at in this respect: Given that most of the texts that have
come down to us are translations from various sources (Greek, Armenian, Syriac,
Arabic, Persian), establishing the relationship between these texts and their (pre-
sumed) originals is of peculiar importance when the informations they conceal are
to be revealed. In the present paper, I shall try to show in which way and with what
means these aims can be achieved1.

Let me first summarize what in my opinion are the general aims of computa-
tional text retrieval. As far as linguistic aims are concerned, texts have to be
treated as coherent sources to be analyzed as to informations about phonetic,
morphological, syntactical and lexico-semantic features of the language(s)
involved. From a literary point of view, texts appear as coherent structures repre-
senting ideas, attitudes, etc. to be analyzed, e.g., with respect to the relationship
between their contents and the shape they are presented in; it goes without saying
that literary analysis of this kind is closely related (or even intersecting) with
linguistic approaches, e.g. with a view to discourse structure or metrics. The same
holds true for historical investigations which, in a widest sense, include political,
sociological, juridical approaches etc.: Here, texts have to be taken as coherent
sources to be searched for data about certain periods of time which can be repre-
sented, e.g., by names of persons and places or other key words, i.e., linguistic
elements again.

When applying approaches as the ones outlined above to digitized textual
data, some typical results can be achieved with no great effort. This is true, e.g.,
for statistical analyses on a phonetic, lexical, or metrical level. An example can be
seen in Tbl. 1 which represents the phonetic (or rather graphemic) statistics of the
Old Georgian Ša ˙tberdi codex (Xth century). Another typical result of computa-
tional text analyses is word indices and concordances which can be either partial
or total; as an example, cp. the KWIC-index („Key-Word-In-Context“) of names
beginning with O- as appearing in the Ša ˙tberdi codex (cf. Tbl. 2). Beyond that,

1 This is an extended version of a paper which was first read on the 2nd Tbilisi Symposium
on Language, Logic and Computation (Tbilisi State University, Sept. 15-20, 1997). An
abridged version will be published in the conference proceedings.

76 Jost GIPPERT

digital texts should also

Tbl. 1: Statistics of the Ša ˙tberdi codex (Xth cent.)

(’a’): 132098
(’b’): 14505
(’g’): 15896
(’d’): 36053
(’e’): 62739
(’v’): 18720
(’z’): 3239
(’[’): 1443
(’t’): 35149
(’i’): 74355
(’k’): 6615
(’l’): 29901
(’m’): 47023

(’n’): 34800
(’j’): 8436
(’o’): 27635
(’p’): 2131
(’x’): 700
(’r’): 39813
(’s’): 58289
(’4’): 5861
(’u’): 26067
(’w’): 5603
(’f’): 4145
(’{’): 6113

(’|’): 5556
(’q’): 9316
(’}’): 8105
(’%’): 2517
(’c’): 9082
(’&’): 3617
(’~’): 7916
(’$’): 853
(’X’): 7843
(’Q’): 2168
(’#’): 1122
(’h’): 1542
(’O’): 74

be applicable to gram-
matical analyses of
various kinds, including
phonological, morphol-
ogical, and syntactical
approaches.

Computational text
retrieval of the indi-
cated type – which nor-
mally consists of
searching and finding
certain sequences of
characters in a given
text environment –
requires several condi-
tions to be fulfilled.
Above all, this concerns the structuring of the electronic texts which must be much
more consistent than what is produced when using a normal word processor for
writing letters or articles.

One thing that has to be cared for is a unique encoding of linguistic elements,
i.e. letters or words, in correlation with the script system to be represented. There
will often be several ways to produce a certain letter; e.g., letters like the German
„umlauted“ ä, ö, ü can either be typed in as such (if present on a keyboard and in
the script font used) or, as combinations of their basic element (vowels a, o, u)
plus a diacritic trema, ¨, set above. While the results may look just equal on the
screen and on the printer (which depends on the correct positioning of the dia-
critic), the encoding remains totally different, each character being represented by
different bytes. When searching a given text file for such characters, there is
hardly any way to allow for both encoding types to be found on the same search-
ing condition. This is why the encoding of linguistic elements to be searched for
has to be unique throughout.

For similar reasons, a unique encoding is also required for the structural
elements of the texts to be analyzed. Firstly, this concerns all kinds of formatting
prescriptions such as tabulators, indenting, and the like. If, e.g., the first line of a
paragraph is to be indented, this can be done in different ways, using either a
certain sequence of spaces or the indenting function of the text processor, both
resulting in a very different encoding. If the indenting is meant to serve as an
indicator of a certain text section such as, e.g., a paragraph boundary, one and the
same encoding should be used throughout.

77Multilingual text retrieval

Tbl. 2: KWIC-index of names beginning with O- from the Ša ˙tberdi codex

#ozia (1)
268:22 − #ioram, #iorams − #ozia, #ozias − #ioatam, #ioatams

#ozia-ca (1)
198:2 ~el; #azaria, romelsa #ozia-ca er{ua, romeli ganketrda − nb~

#ozias (1)
268:22 #ioram, #iorams − #ozia, #ozias − #ioatam, #ioatams − #a{az, a{a

#oziajsa (1)
338:28 mamis−mamisa %emisa #oziajsa, vitarmed: "igive

#oziel (1)
197:40 #elise, #abdia, #iovel, #oziel, #eliazar, #azaria; #ioram − [~

#oldad (1)
198:14 #ieremia, #sofonias, #oldad, #baru{; #ioa{as − g~ ttue.

#omeros (1)
196:18 asoj. amistws−ca miamsgavsa #omeros ricXw igi kb~ta mat

#onori (1)
201:38 − ie~ ~el, #arkadi − kg~ ~el; #onori − ig~ ~el; #tevdosi mcir[

#ose (2)
198:3 ~inajs~arme4quelebdes #ose, #amos, #esaia, #ionas; #iovatam
198:6 mouQda #isra[lsa da ~ar4quena #ose mef[#isra[lisaj atsa

#os[sitgan (1)
198:25 qovelni ~elni 4quenvitgan #os[sitgan mefisa #isra[lisajt da

#osia (1)
198:13 − ne~ ~el; #amos − b~ ~el; #osia − la~ ~el,

#oso4er (1)
200:19 − kg~ ~el; #p4olemeos #oso4er − kz~ ~el; #p4olemeos

#o{ozia (1)
197:40 #azaria; #ioram − [~ ~el; #o{ozia − a~ ~el; #godolia,

#o&raQe (1)
320:5 {ala{i, #kaspi, #urbnisi da #o&raQe, da ciXeni matni: ciX[

#o&raQisaj (1)
320:6 ciX[#kaspisa, #urbnissa da #o&raQisaj. daukwrda #ale{sandres

Encoding considerations of the latter type are especially important because
with a view to a computational analysis, texts will always have to be clearly
divided into units that can serve as a basis for reference. Such divisions can consist
of all kinds of reasonable structuring levels such as, e.g., pages, chapters, para-
graphs, lines, strophes, verses, sentences, phrases, speakers (in a dramatic play),
etc. Normally, only those level divisions can be entered automatically that depend
on the structure of the text itself (this holds true, e.g., for lines in a page or pages
in a text); this presupposes, though, that the encoding of the text reflects its under-
lying structure in a unique way as indicated above.

78 Jost GIPPERT

A retrieval software that is to be applied to well-encoded texts of this type
must be able to cope with several further problems. First of all, it is expected to be
adaptable to the script(s) involved. While it is always possible (and often reason-
able) to represent a given script by a substituting transliterative or transcriptive
system, there is no reason why nowadays’ computers should keep restricted to the
plain A-to-Z representation many of us had to work with some years ago when
personal computers began to emanate from main frame systems. We should also
bear in mind that even transcriptions are not normally restricted to the basic letters
of the Latin alphabet, diacritics of all kinds constituting script reservoirs to be
managed in their own right. Digraphs such as, e.g., c$ for Georgian % / č may, if
applied in a unique way, be an interim solution for the encoding of foreign charac-
ters, but they will not be easily applicable to an investigation into the phonological
structure of Georgian texts if kept as such.

Another necessary feature of a text retrieval system is the ability of sorting
and arranging, both with respect to structural text elements such as chapters, para-
graphs, and the like, and to the linguistic elements contained. In the latter case, this
will mostly mean the application of alphabetic orders, depending on the script
system used. Within computation, sorting of characters may be an intrinsic feature
of the encoding, but normally, this holds true for the Latin A-Z characters only,
the alphabetic position of which is reflected by their „byte“ value within the so-
called „ASCII“ code today’s computers use. Diacritic combinations such as ä, ö,
ü, however, will require a special treatment, and for some languages, even di- or
trigraphs will have to be accounted for in a special way (cp., e.g., Czech ch which
has to be sorted as a special character after h, or Spanish ll as following simple l).

While phonological investigations can easily be performed on the basis of the
encoding of the text itself, their objects being represented by unique items to be
searched for, morphological and syntactical analyses will require additional
informations which do not form part of the text proper. Normally, these will
consist in some kind of „tagging“, i.e., entering grammatical qualifications to
specify text elements such as, e.g., verbal forms. The text retrieval system must
then be able to distinguish the text elements proper from their tagging, albeit
keeping the coherence between them. Without tagging, only those morphological
features that have a unique representation in terms of uniquely encoded characters
(such as, e.g., certain verbal endings) can be retrieved easily. A special case is the
distinction of proper names and other nouns, which is equally important both for
linguistic and non-linguistic analyses, and which could be done automatically in
an (alphabetical) writing system that uses capital letters for proper names only; but
such a writing system seems not to exist, most alphabets using capital letters at
least also for sentence-initial words. Note that for Georgian which when written in
mxedruli script has no capital letters at all, a special marking of proper names is

79Multilingual text retrieval

required in any way (cf. Tbl. 2 where the „number sign“, #, is used for this pur-
pose).

A text retrieval problem which applies to all languages that have morphologi-
cal features such as word inflexion, ablaut and the like, is what might be called the
„lemma dilemma“: Word forms that belong together in a paradigm cannot be
easily grouped together for searching because their structures are too different
formally; cp., e.g., ablauting verbal forms such as German schreiben vs. geschrie-
ben or even „suppletive“ paradigm items such as English (I) am vs. (you) are vs.
(he/she/it) is etc. If these are to be treated as variant forms of one underlying verb,
e.g. in establishing a word index, a special tagging will be necessary again.

The same holds true for the opposite case: Word forms that look identical
although they do not belong to one lemma. This may be a problem of encoding as
is the case with doublets like Russian muka „pain“ vs. muka „flour“ which are
identical only graphically: The different accentuation of the two words could
easily be accounted for by using a pronunciation-oriented transcription (múka vs.
muká). But the problem remains with real homonyms such as German Leiter
„ladder“ vs. Leiter „manager“, and whenever searching routines apply in a
computational text analysis, it extends even to partial homonymity of word
elements such as Georgian šen appearing as a personal pronoun „you“, but also as
part of the possessive pronoun šen-i „your“ or within the verbal form a-šen-ebs
„he/she constructs (it)“. Here too, tagging will be necessary in order for a retrieval
software to be able to distinguish the respective lemmata.

As was stated above, the basis of all kinds of text retrieval is the searching of
a certain code or group of codes („strings“) in a given text which consists of a
sequence of codes itself. It goes without saying that searching procedures of this
type will be the more time-consuming, the longer the text and the more frequent
the searched-for string is. It may therefore be reasonable for a text retrieval system
not to search sequentially within a given text but to use a preindexation by which
all informations as to the positioning of words and other text elements are stored
in an extra file. A software product which uses this procedure for all kinds of text
retrieval is the „WordCruncher“ program which has been developed by Brigham
Young University (Utah)2. Let me now evaluate the applicability of this program

2 The WordCruncher program has existed in several MS-DOS versions since 1985 (last
release: 4.6); a first MS-Windows version was released in 1996 (latest release: 5.2b; cf.
http://www.wordcruncher.com).

80 Jost GIPPERT

with respect to the requirements as summarized above, taking texts from the
TITUS text data base3 as examples.

Preindexation is indeed the most striking feature of the WordCruncher system
if compared with text analysis programs that are based on sequential searching.
Using preindexation, WordCruncher is able to analyze texts with practically no
size limits: The largest file that has been indexed within the TITUS project is the
corpus of Old English texts as prepared for the Dictionary of Old English project
at the University of Toronto. As a plain text file, it has about 35 MB; after its
preindexation, all occurrences of any word as appearing in it will be found within
less than a second4.

To use this feature, the text has to

Fig. 1: Definition of text levels

be prepared in a structured way, meet-
ing the requirements of uniqueness as
indicated above. This holds true, first
of all, for the division of text elements
that will be used for reference. In the
present (Windows) version of the
WordCruncher program, up to 10
levels can be assigned for this pur-
pose, matching, e.g., pages and lines
of a book edition or chapters, para-
graphs and sentences of a book. Cf.
Tbl. 3 where four such level markings
consisting of the code | plus a certain
letter (|A for „documents“, |b for
„books“, |P for „pages“, |l for
„lines“) are represented in one of the
texts from the Ša ˙tberdi codex; Fig. 1 shows the dialog box for the definition of
levels. The number of levels has been significantly increased, by the way, as
against former (MS-DOS) versions of the program where only three levels could
be assigned.

3 The TITUS project („Thesaurus Indogermanischer Text- und Sprachmaterialien“) which I
have been running since 1986 aims at establishing a data base of all texts that are relevant
for Indo-European studies, i.e. texts from ancient Indo-European languages (Old Indic,
Hittite, Italic etc.) as well as neighbouring languages (e.g., Old Georgian). For its present
state cf. http://titus.uni-frankfurt.de/texte/texte.htm.
4 Practically, the size limit of a text file is 2 GB, depending on the limits of the DOS/Wind-
ows operating system. The maximum number of unique word forms in a text is limited to 224

= 16,777,216.

81Multilingual text retrieval

Except for the level marking, the texts to be prepared for preindexation

Tbl. 3: Preparation of text file for WordCruncher (Windows)

SIF=\etc\tituscx.sif

Pcenter Ttitle Textus homiletici et exegetici Tn16
|ACod.Satb.
Tsubtitle e Codice Satberdiensi Tn16

Twl22 Gregorius Nyssenus, De hominis opificio Tn16

Pnormal |bGreg.Nyss.Buneb.
|P67
|l1 Tcgei16 tkumuli ˙cmidisa da ne ˙tarisa mamisa [!] čuenisa Grigoli Tn16
|l2 Tcgei16 Nosel ebis ˙koṗosisay ˙kacisa šesakmisatws, romeli Tn16
|l3 Tcgei16 miu ˙cera ymasa twssa ˙Pe ˙tres ebis ˙koṗossa sabas ˙tielsa* Tn16
|l4 Tcgei16 (1) u ˙kuetu-mca y̌er-iq̇o didebay satnovebis-momgebeltay ṗa ˙tivita Tn16
|l5 Tcgei16 monagebtayta, iṗovnes-mca q̇ovelni sikadulni sapasetani undo, ražams-mca Tn16
|l6 Tcgei16 ševa ˙tq̇ut satnovebata šenta tkumulisa misebr Solomon Tn16
|l7 Tcgei16 brynisa, rametu uzeštaes ṗa ˙tivisa mis sapasetaysa ars madli igi ġirsi, Tn16
|l8 Tcgei16 šenda. da a ˙c ma ˙cuves čuen dġesas ˙cauli. ˙cmidisa da didebulisa aġvsebisay Tn16
|l9 Tcgei16 čueulebisaebr ṗirvelisa mo ˙cq̇alebasa megobrebay šeni da čuen Tn16
|l10 Tcgei16 ˙cina-uq̇opt didebulebasa šensa. ō ˙kaco ġmrtisao, yġuensa ˙kninsa da Tn16
|l11 Tcgei16 vitar-igi šenda ġirs-ars, xolo ara tu u ˙kninessa yalisa čuenisa[sa]. da Tn16
|l12 Tcgei16 ese yġueni tkumul ars vitarca samoseli šeuracxi moksovili gonebisagan Tn16
|l13 Tcgei16 glaxa ˙kisa šromita. da mizezsa amis tkumulisasa vhgoneb tu Tn16

require certain additional informations as to structuring and formatting. While the
basic structure of the texts is a plain DOS text format (i.e., only line feed codes,
spaces and tabulators appear besides plain characters), several formatting
prescriptions can be entered as „tags“, consisting of a begin and an end character,
a letter defining the class of the tag, and the name of the tag. In the given example
(Tbl. 3), various tags of the type X(name) are represented; Pcenter , e.g.,
marks the beginning of a paragraph („P“) structure with line centering, and

Ttitle marks the beginning of a text passage that uses a „text style“ („T“)
adaptable to „titles“. The meaning of each tag has to be defined before preindexa-
tion, and the actual definitions are not only responsible for the indexing but also
for the appearance of the text on the screen during retrieval; cp. Fig. 2 and Fig. 3
where the same text is displayed in two ways, depending on different assignments
of fonts to the text structure tags. The tag definitions are stored in a so-called „SIF
file“ („Style include file“) which must be referred to in the first line of the text to

82 Jost GIPPERT

be indexed; cf. Tbl. 4 showing the structure of the definitions mentioned above as
appearing in the SIF file.

Fig. 2: Main text window Fig. 3: Same, with mxedruli font

Tbl. 4: Definition of formatting elements in a WordCruncher „SIF“ file

BC=
EC=
DOCUMENT_STYLE

LINE_LENGTH inches 11.0
LEFT_MARGIN inches 0.1
RIGHT_MARGIN inches 0.1
INDEX_OFF superscript subscript
END

PARAGRAPH_STYLE normal
RULER normal
JUSTIFICATION left
END

PARAGRAPH_STYLE center
RULER center
JUSTIFICATION center
END

...

...
TEXT_STYLE title

FONT orient
CHARACTER_STYLE bold
FONT_POINTSIZE 24
TEXT_COLOR [0 0 128][255 255 255]
END

TEXT_STYLE cgei16
FONT georgian-trs.
CHARACTER_STYLE italic
INDEX_FLAG on
FONT_POINTSIZE 15
TEXT_COLOR [255 0 0][255 255 255]
END

...

Another important element of the preparation consists of establishing sorting
sequences for the linguistic elements. This can either mean standardized alpha-
betic orders or special applications by which certain character or delimiter func-
tions are assigned to the letters in a given font. Using the dialog box illustrated in
Fig. 4, characters can be assigned an equal value (e.g., A and a and ä; this is true
even for pairs of characters such as ae vs. ä), parentheses can be marked as

83Multilingual text retrieval

ignorable so that, e.g., Old Georgian

Fig. 4: Definition of character sequence

abbreviated r[omelma]n r[omelma]n
„which (rel.pron.)“ and non-ab-
breviated romelman romelman are
treated as equivalents, and so on.

When a text has been successful-

Fig. 5: „Wild card“ search > Fig. 6: Filtered „word wheel“

ly preindexed, it is ready for retrieval
with the so-called „search engine“
which searches not the text but its
index. Its central element is a so-
called „word wheel“ which is nothing
but an alphabetical list of the words
contained in the text. It can be used
for searches of single word forms
such as Old Georgian ars ars „(he) is“ (cf. ?) or combined searches of word
forms in certain contextual environments such as t{umul tkumul „spoken“ +
ars ars „is“ forming an „exact phrase“ sequence (cf. ?); it can also be used for
so-called „wild card“ and „substring“ searches by filtering the word wheel with
respect to certain phonotactic or morphotactic conditions (cf. Fig. 7 and Fig. 8
where word forms containing eb inside and ay at the end are searched for). For the
sake of lexical investigations, word forms that belong to one lemma can be
grouped together (cf. Fig. 9 where the case forms of kaci ˙kaci „man“ are col-
lected), and such lists can be saved for further usage (cf. Fig. 10). It goes without
saying that using the word wheel for a language such as Georgian requires a key-
board interface that matches the font the linguistic elements are represented with.

84 Jost GIPPERT

This can be easily defined by integrating a „character map“ referring to the Win-
dows-ANSI standard in the SIF file (cf. Tbl. 5 showing the definition table and
Fig. 11 showing the help screen representation of the keyboard assignment).

Fig. 7: Substring search > Fig. 8: Filtered word wheel

Fig. 9: Related word forms collected Fig. 10: Save list function

Fig. 11: Keyboard definition as usable in the search engine

85Multilingual text retrieval

Using the word wheel for searching, the contexts of the word form(s)

Tbl. 5: Character map table definition within „SIF“-file (extract)

CHARACTER_MAP Georgian
MAPS 61=61 63=63 96=96 65=192 83=234 68=68 70=70 71=204 72=208 74=74 75=214
MAPS 76=217 80=229 220=246 42=42 89=89 88=88 67=194 86=86 66=66 78=78 77=77
MAPS 59=59 58=58 95=95 94=196 35=35 124=197 39=39 97=97 115=115 100=100 102=102
MAPS 103=103 104=104 99=99 118=118 98=98 110=110 109=109 44=44 46=46 45=45
MAPS 123=92 91=123 93=125 106=106 107=107 108=108 246=148 228=132 113=113
MAPS 119=119 101=101 114=114 116=116 122=122 117=117 105=105 111=111 112=112
MAPS 252=129 43=43 121=121 120=120 125=182 92=184 64=231 126=93 181=219 124=91
MAPS 131=159 225=160 237=161 243=162 228=132 224=133 229=134 231=135 234=136
MAPS 235=137 232=138 239=139 238=140
END

searched for will immediately be presented in a reference list showing the occur-
rences with their contexts grouped for scrolling (cf. Fig. 12 for four occurrences of
case forms of kaci ˙kaci „man“). For single word forms, the reference list can also
be invoked using the internal hyperlinking structures of the preindexed text file,
viz. by double clicking on a certain word form in the main text window. The
reference list can further be sorted according to the contextual structures of the
occurrences (cf. Fig. 12), and a „text out“ function is available for storing its
contents (cf. Fig. 13), e.g. with a view to preparing a printed index.

Fig. 12: Sorting of reference list Fig. 13: Text-out function

Another feature of the program that is worth mentioning consists in the
embedding of graphics. It can be foreseen that a new epoch of philological work
will constitute itself soon when digitized images of manuscripts are readily avail-
able together with the philologist’s interpretation in one computer screen, as in
Fig. 14 showing a page from the so-called „Sinai lectionary“ (VIIth century) as an

86 Jost GIPPERT

example. With the Word-

Fig. 14: Text with graphics hyperlink

Cruncher system, hyper-
linking of this type is not
restricted to graphics,
though, but can also be
applied to parallel texts etc.

All in all, the Word-

Fig. 15: Morphological tagging (provisional method)

Cruncher system in its
present state of develop-
ment seems to match the
requirements of a scholarly
text retrieval to a large
extent. This is why it has
been chosen as the primary
retrieval tool for the
TITUS project5. There are still some shortcomings, however, that require further
improvement: For the time being, morphological tagging is not an intrinsic feature
of the program, and it can only provisionally be used by entering the necessary

informations as normal text
elements as can be seen in
Fig. 15 where the taggings
are marked by a black
background. And with the
present version, the gener-
ation of a complete
„KWIC“ concordance of a
given text is not possible
albeit this was an outstand-
ing feature of earlier (MS-
DOS) releases6.

5 A WordCruncher server has meanwhile been installed which allows for immediate internet
retrieval of many of the texts that are incorporated in the TITUS data base; cf. http://
titus.uni-frankfurt.de/texte/tituswc.htm for details.
6 The largest index I produced with WordCruncher for DOS was a complete word concor-
dance of the works of the Greek medical author, Galenos, consisting of a text file of 17 MB.
This has recently been published in an abridged form (Index Galenicus, compiled by Jost
Gippert, Verlag J.H.Röll, Dettelbach 1997; cf. also http://titus.uni-frankfurt.de/
lexica/galeninx.htm).

87Multilingual text retrieval

Let us now turn to the specific aims and requirements of a multilingual text
retrieval. When speaking of multilingual texts, there are at least two cases that
have to be distinguished. One is texts that are constituted by multilingual elements
in that they contain quotations from foreign languages within them; cp., e.g.,
Fig. 16 which shows an Old Maldivian document containing Arabic words. The
special task of a retrieval software to be applied to such texts consists of the
separation and proper administration of the elements belonging to each language.
This requires a means of encoding language boundaries within the texts (i.e., tags
or delimiters) as well as handling of different scripts, script directions, etc. (note
that in the given example, the Brahmi-type Old-Maldivian script runs from left to
right while the embedded Arabic passages are written from right to left).

The second case to be

Fig. 16: Maldivian document containing Arabic words

dealt with when speaking
about multilingual text
retrieval concerns texts in
different languages that are
interrelated with each other in
a certain way, e.g. in that one
of them is translated from the
other (or both represent trans-
lations from a third one etc.);
this case is typically repre-
sented by Bible translations.
Another case to be mentioned
here is texts that refer to the same contents (e.g., historical data), but more or less
independently from another; this is typical, e.g., for the relationship between
chronicles and eyewitness reports. In all these cases, a special task of text retrieval
consists in establishing the interdependencies that may exist between certain
linguistic elements such as names, translational word pairs, syntactical units and
the like7. For this purpose, a special method of marking will be required that
allows for a „synchronous“ administration of textual levels (e.g., chapter struc-
ture, sentence structure) as well as single words or word forms. This can either be
done in a unified text structure (e.g. with „parallel“ texts formatted in columns) or
with separate text „windows“ synchronized externally.

7 For a thorough discussion of the problems involved cf. J. Gippert, Towards an automatical
analysis of a translated text and its original: The Persian epic of Vı̄s u Rāmı̄n and the
Georgian Visramiani, in: Studia Iranica, Mesopotamica et Anatolica 1, 1994 [1995], pp. 21-
60.

88 Jost GIPPERT

Fig. 17: Maldivian/Arabic mixed text Fig. 18: Multilingual NT arrangement

Evaluating the WordCruncher system with a view to these requirements, we

Fig. 19: Language-specific search

may state again that it offers a good deal of practicable solutions. The most impor-
tant feature consists in the „text style“ function as referred to above which allows
not only for a differentiation of fonts, i.e., scripts, but also of languages to be kept
separate during preindexation and retrieval. This extends both to the usage of
different transcription systems (cf. Fig. 17 where the Old Maldivian document
treated above is handled in this way) and to the adaptation of original scripts (cf.
Fig. 18 where several Bible versions are contrasted, including Syriac written from
right to left as well as
additional transcrip-
tions8).
The language differenti-
ation thus produced is
reflected both in the
hyperlinking structure
of the text (so that
double clicking of a
word form will invoke
its „search“ in the ap-
propriate environment
only, cf. Fig. 19) and in
the search engine. Here,
the user can choose the
appropriate language

8 For testing purposes only, Syriac has been represented in three scripts, Estrangelo, Nestori-
an, and Serto, in the file.

89Multilingual text retrieval

from a scrolling box, thus opening the specific word wheel with its keyboard
settings etc. (cf. Fig. 20 where Greek is used as an example). This function can
further be applied to combined searches across language boundaries as illustrated
in Fig. 21 which shows the words meaning „gold“, Georgian o{rosa okrosa
(dat.), Greek xrus<on and Syriac dhb, searched for as appearing within the same
verse.

Fig. 20: Language choice in search engine Fig. 21: Multilanguage search

A search of the indicated type requires a unified text structure, i.e., the several

Fig. 22: Various sources of St. Nino’s legend

versions have to be arranged in a verse by verse alignment within one text file. It
should be noted then that the same structure can also be applied to a text existing
in several versions in
one and the same lan-
guage. This is demon-
strated in Fig. 22 where
various witnesses of the
legend about the con-
version of Georgia to
christianity by St. Nino
are contrasted. Here, the
list of „languages“
covers not only Armen-
ian (as represented by
the Patmowtciwn hay-
occ, a 13th century
translation of the Geor-
gian chronicle) but also
abbreviations such as

90 Jost GIPPERT

KCX or MokcevaA referring to different Old Georgian texts (Kartlis cxovreba, i.e.
the Georgian chronicle, and the older redaction of Mokcevay kartlisay, i.e., the
Ša ˙tberdi version of the legend).

Another way of establishing interdependencies between related texts consists

Fig. 23: Four Bible versions synchronized

in external „synchronizing“ which can be applied after indexation only; cf.
Fig. 23 where a synchronized arrangement of four distinct Bible versions (Greek,
Armenian, Gothic, and Syriac) is taken yas an example. This procedure has
obvious advantages as far as the screen appearance is concerned; linkage remains
limited, however, to the levels of text structure (in the given example, Mt. 5,9) and
cannot be extended to linguistic elements.

As was stated above, the main feature which controls the language functions
within the WordCruncher system is the text style management. In reality, there are
three types of interdependent definitions that have to be provided in a SIF file
when languages (or „quasi-languages“ such as KCX) are to be kept separately: the

91Multilingual text retrieval

TEXT_STYLE definition (cf. Tbl. 6)

Tbl. 6: TEXT STYLE definitions >>>

TEXT_STYLE mxge12
FONT georgian-mroveli
INDEX_FLAG on
FONT_POINTSIZE 12
TEXT_COLOR [0 128 0][255 255 255]
END

TEXT_STYLE mxge16
FONT georgian-mxedruli
INDEX_FLAG on
FONT_POINTSIZE 16
TEXT_COLOR [128 0 0][255 255 255]
END

TEXT_STYLE mxge22
FONT georgian-mxedruli
INDEX_FLAG on
FONT_POINTSIZE 24
TEXT_COLOR [128 0 0][255 255 255]
END

...

Tbl. 7: FONT declarations >>>

FONT georgian-mxedruli
FONT_NAME TITUS-Mxedruli
FONT_FAMILY roman
CHAR_SET ansi
PITCH proportional
DIRECTION left-to-right
FONT_TYPE TrueType
LANGUAGE Oldgeorgian-Mxedruli
END

FONT georgian-trs.
FONT_NAME TITUS-ChristianEast
FONT_FAMILY roman
CHAR_SET ansi
PITCH proportional
DIRECTION left-to-right
FONT_TYPE TrueType
LANGUAGE Oldgeorgian-trs
END

...

refers to a FONT declaration (cf.
Tbl. 7) which, in its turn, is connected
with a LANGUAGE definition (cf.
Tbl. 8). Although this system has

Tbl. 8: LANGUAGE definitions

LANGUAGE Oldgeorgian-Mxedruli
LANGUAGE_ID GEORGIAN
CHARACTER_MAP Georgian
TEXT_STYLE mxge16
LST_FILENAME\ETC\GEORGICA.ETX
END

LANGUAGE Oldgeorgian-Xucuri
LANGUAGE_ID GEORGIAN
CHARACTER_MAP Georgian
TEXT_STYLE axge16
LST_FILENAME\ETC\GEORGICA.ETX
END

LANGUAGE Oldgeorgian-trs
LANGUAGE_ID GEORGIAN
CHARACTER_MAP Georgian
TEXT_STYLE cgei16
LST_FILENAME\ETC\GEORGICA.ETX
END

...

proved quite successful within the
TITUS project (the amount of lan-
guages to be definable within one SIF
file is 30 which will be enough for
most cases), it has at least one major
disadvantage: It does not enable a
truly unique encoding of separate
languages (and scripts to be applied to
them) because it implies a so-called
font mapping on an 8-bit encoding
basis (DOS-ASCII or Windows-
ANSI). This means that one and the
same byte value may represent differ-
ent characters in different contexts
such as, e.g., a Latin a, a Greek a, a

92 Jost GIPPERT

Georgian a, an Armenian a, etc., all being represented by a byte value of 97; this

Tbl. 9: Passage from Matthew in DOS/ASCII representation

Pnormal |p9
Tdge16 ozia Wva ioatam. ioatam Wva akaz. akaz Wva eze ia. Tn16
Tcgei16 ozia Wva ioatam. ioatam Wva akaz. akaz Wva eze ia. Tn16
Tmge16 ozia Wva ioatam; ioatam Wva akaz; akaz Wva eze ia. Tn16
Tcgei16 ozia Wva ioatam; ioatam Wva akaz; akaz Wva eze ia. Tn16
Tgr16 äO í @ è / éSS V S WòS äI∩ p, äI∩ àp è éSS V S WòS

äA~ , / äA~à è éSS V S WòS ÄE aí S, Tn16
Thy16 Ozia cnaw zyova±am: Yova±am cnaw za az: A az cnaw zezekiay: Tn16
Thyti16 Ozia cnaw zyova±am: Yova±am cnaw za az: A az cnaw

zezekiay: Tn16
Tsk16 %wzy& &wld lywtm ywtm &wld l& z & z &wld l zqy& Tn16

Pright Tse16 ‘8zy" ^wjd j08TM y8TM ^wjd j"x7 ^x7 ^wjd j+7q0" Tn16
Tsn16 ‘8zy$ ^wjd j08TM y8TM ^wjd j$x7 ^x7 ^wjd j+7q0$ Tn16
Tss16 ‘8zy" ^wjd j08TM y8TM ^wjd 1’7 ^’7 ^wjd j+7q0" Tn16

effect can be seen in Tbl. 9 where the Bible text passages as quoted above are
rendered in plain DOS/ASCII format (text style markups represented in bold
characters). The disadvantage will mainly be noted when multilingual texts thus
produced are to be converted into different formats or when multilingual parts of
a text are to be extracted: At present, the font information necessary for the dis-
tinction cannot be exported as such and has to be added manually again.

As this is a general problem of 8-bit based systems, a solution may be
expected to emerge from the development and application of Unicode as the first
OS-independent 16-bit encoding standard. Unfortunately, the WordCruncher
system has no Unicode interface yet; the applicability of Unicode encoding to
multilingual texts can, however, be demonstrated even now using a web browser
such as the Netscape Communicator which (starting from release 4.0) allows for
a handling of texts that are encoded in the so-called UTF-8 (8-bit Unicode transla-
tion) format. After installing an appropriate font, a multilingual text such as a
synoptical arrangement of the various sources of St. Nino’s legend can well be
displayed (and printed) on the basis of MS-Windows 95, if formatted as a web

93Multilingual text retrieval

page; cf. Fig. 24 for an example9. It goes without saying, though, that this is

Fig. 24: Several sources of St. Nino’s legend in Unicode (UTF-8) encoding

hardly sufficient for a text retrieval of the type discussed here. And even with
respect to future developments, it remains doubtful whether Unicode can be an
adequate basis for this: As an encoding system, it is based on scripts, not on
languages, and the problem of distinguishing homographs such as German hier
„here“ and French hier „yesterday“ or French haut „high“ vs. German haut
„strikes“ (vs. German Haut „skin“) is not solved by it in any way. A tagging
system for the distinction of languages will therefore remain necessary even when
Unicode is applied.

9 This page is available, together with other materials concerning Unicode, under http://
titus.uni-frankfurt.de/unicode/unitest.htm. It may be interesting to note that
using Unicode requires the „multilanguage“ function of Windows 95 to be installed and that
it will not work with a 80486 (or lower) processor.

		2012-01-01T19:59:38+0100
	Jost Gippert

