
Achtung!
Dies ist eine Internet-Sonderausgabe des Aufsatzes

„Language-specific encoding in multilingual corpora:
Requirements and solutions“

von Jost Gippert (1999).
Sie sollte nicht zitiert werden. Zitate sind der Originalausgabe in

Multilinguale Corpora: Codierung, Strukturierung, Analyse.
11. Jahrestagung der Gesellschaft für Linguistische Datenverarbeitung

(ed. J. Gippert / P. Olivier), Praha 1999, 371-384
zu entnehmen.

Attention!
This is a special internet edition of the article

“Language-specific encoding in multilingual corpora:
Requirements and solutions”

by Jost Gippert (1999).
It should not be quoted as such. For quotations, please refer to the original

edition printed in
Multilinguale Corpora: Codierung, Strukturierung, Analyse.

11. Jahrestagung der Gesellschaft für Linguistische Datenverarbeitung
(ed. J. Gippert / P. Olivier), Praha 1999, 371-384.

Alle Rechte vorbehalten / All rights reserved:
Jost Gippert, Frankfurt 2001-2011



Language-specific encoding in multilingual corpora:
Requirements and solutions

Jost GIPPERT

Only a century after Johannes Gutenberg had invented the art of employ-
ing movable types in printing, this new method of publishing had devel-
oped in such a way that it became possible to use it for all kinds of
multilingual documents, the most striking examples being the so-called
“polyglot” Bible editions where modern versions of the Holy Scriptures
were arranged synoptically with their Latin, Greek, Hebrew, or Syriac
ancestors, all printed in their original scripts (cf., e.g., HUTTER 1599-
1643). And by 1650, it had become quite common to adopt this standard
of printing to what we might call routine products such as a young theo-
logist’s fourty-page doctoral thesis; cp. the specimen taken from HARTUNG

(1659) which shows the beautifully mixed arrangement of Latin, Greek,
Hebrew, Syriac, and Arabic possible at that time.

Figure 1: HARTUNG (1659), title page Figure 2: HARTUNG (1659), p. [23]



372 Jost GIPPERT

Today, more than 500 years after Gutenberg’s invention, we are still

Figures 3-4: Avestan, Pahlavı̄, Pāzend and Sanskrit versions of Aog emadaēcā

striving to attain a comparable standard when working with digital equip-
ments, the most tackling problem consisting in the mixed processing of
different script directions. This is by no means a far-fetched task to be
mastered by a fringe group of ivory-towered outsiders only, as some people
might think, because the production of multilingual texts plays a steadily
increasing rôle in the transfer of data via the World Wide Web, and differ-
ent script directions are involved wherever European and Near Eastern lan-
guages have to be arranged side by side. And the problem is in fact not
even a modern one: It had to be coped with, e.g., by the writers of Zoro-
astrian manuscripts such as the one reproduced in figures 3 and 41. Apart
from its basic part, the Avestan (Old Iranian) text called Aog emadaēcā, this
manuscript contains the Middle Persian version of the same text written in
two different scripts, its translation into Sanskrit and a translation into Old
Gujarātı̄, added secondarily in margine. Of the scripts involved, only the

1 Ms. K 42 of the Copenhagen Royal Library. Its first page reproduced here is taken
from the facsimile edition printed in JAMASPASA (1982).



Language-specific encoding in multilingual corpora 373

one used for Sanskrit and Gujarātı̄ (the so-called “Devanāgarı̄”) is directed
left-to-right while both the Avestan script (used for Avestan and Middle
Persian in its so-called “Pāzend” style) and the Middle Persian script
proper (so-called “Pahlavı̄”) are written from right to left. As the figures
show, the solution applied by the writer is a simple one: Arriving at a
position where he had to switch from Avestan to Sanskrit, he turned the
paper by 180°, then continuing with Devanāgarı̄ in its usual direction, but
with lines arranged upwards; at the end of the Sanskrit passage, he turned
the paper again in order to proceed with one of the other scripts, etc. etc.

It is not the question of processing and printing mixed scripts, how-

Figure 5: Mt. 6,9 in several versions (“WordCruncher” screen output)

ever, that I intend to discuss in the following pages. Several software sol-
utions have been developed for this problem in recent years (cp., e.g.,
figure 5 showing the “WordCruncher” screen output of Mt. 6,9, the
beginning of Our Father, in a mixed arrangement of Georgian, Greek,
Armenian, and Syriac Bible versions, both transliterated and in original
scripts), and it is to be hoped (though by no means certain, cf. below) that
after the adaptation of operating systems to real 16-bit encoding on the
basis of Unicode, it will become more and more neglectable.

In the present paper, I shall deal with a different problem instead
which is related to but not necessarily identical with the one discussed
above, viz. the problem of preparing multilingual corpora for a language-
specific retrieval. The synoptical arrangement of several Bible versions in
one printed edition or in one electronic text file is indeed a multilingual
corpus in its own right, just as the Zoroastrian manuscript we have seen



374 Jost GIPPERT

before: The data they contain do not represent one text in the linguistic
sense of this word, but several texts that are related to each other by their
contents and their structure but differentiated from each other by their
language. A language-specific retrieval to be undertaken under these
conditions presupposes the languages involved to be clearly identifiable,
i.e., separable from one another so that analyses concerning the individual
languages can be performed as well as analyses concerning the mutual
relationship of, e.g., linguistic units of a translated text and its model.

A software solution that matches these requirements to a certain
extent by combining a reasonable amount of functions designed for lin-
guistic analysis with a programmable language-specific interface, is the
system provided by “WordCruncher”. As I have discussed the facilities of
this program recently in another context2, I shall confine myself to a brief
resumé here before trying to evaluate its efficiency.

In its present release (5.3) which is unfortunately available as a MS-
Windows version only, the “WordCruncher” retrieval system3 allows to
index and analyse multilingual text files of up to 2 GB size4. The number
of languages represented in a given document should not exceed ten if they
are to be analysed separately and if the data are to be accessed from a
remote server; otherwise up to 31 languages can be kept distinguished with-
in one text file. The retrieval presupposes a preindexation which consists
in the adaptation of several file formats: The initial input requires a plain
(8-bit ASCII/ANSI or DOS) text file containing the textual data with addi-
tional tags storing information about the inherent structure of the text (e.g.,
page and line numbers, chapter or paragraph headings etc.) and its items.
This input file (a so-called ETA file) must first be converted into a propri-
etary format (ETB file) which is ready for the preindexing process. The
resulting index file (ETX) serves as the basis for the retrieval which is
extremely fast as it involves no further (sequential) searching.

2 GIPPERT (1997), 75-93.
3 Developed by Brigham Young University (since 1985). The text viewer necessary for

the retrieval of preindexed data (both locally and from a remote server) can be downloaded
free of charge from the TITUS web pages (cf. http://titus.uni-frankfurt.de/-
texte/tituswc2.htm). For the full version cf. http://www.wordcruncher.com or
contact johnston@wordcruncher.com .

4 The maximum file size depends on the operating system, not on the program.



Language-specific encoding in multilingual corpora 375

Information concerning languages is stored in a twofold way in this

Table 1: WordCruncher input (ETA) file containing Mt. 6,9

〈Pnormal 〉
|p9
〈Tdge16 〉esret ilocevdi tkuen. mamao ueno romeli xar cata Wina.

mida itavn saxeli Weni: 〈Tn16 〉
〈Tcgei16 〉esret ilocevdi tkuen. mamao ueno romeli xar cata Wina.

mida itavn saxeli Weni: 〈Tn16 〉
〈Tmge16 〉xolo tkuen esret ilocevdit: mamao ueno, romeli xar cata

Wina, mida itavn saxeli Weni, 〈Tn16 〉
〈Tcgei16 〉xolo tkuen esret ilocevdit: mamao ueno, romeli xar

cata Wina, mida itavn saxeli Weni, 〈Tn16 〉
〈Tgr16 〉O¡W∩@ o S tFoV ú~ V p ç@_ / W F {p S √ S Woç@ o F -

Soç@, / ° V 〈W∩ Wò ÉSop Vod, 〈Tn16 〉
〈Thy16 〉Ew ard aysp s ka dow ya p±s. Hayr mer or yerkins,

sowrb e i i anown o: 〈Tn16 〉
〈Thyti16 〉Ew ard aysp s ka dow ya p±s. Hayr mer or yerkins,

sowrb e i i anown o: 〈Tn16 〉
〈Tcesk16 〉hkn& hkyl ~lw &ntwn &bwn dbWmy& ntqdW Wmk 〈Tn16 〉
〈Pright 〉

〈Tsye16 〉hk?“ hk0L ~j8 ^ntwW ^b8W Db}.0” ntqd\ |.6 〈Tn16 〉
〈Tsyn16 〉hk?$ hk0L ~j8 ^ntwW ^b8W Db}.0$ ntqd\ |.6 〈Tn16 〉
〈Tsys16 〉hk?“ hk0L ~j8 ^ntwW ^b8W Db}.0” ntqd\ |.6 〈Tn16 〉

system. Within the document to be preindexed, it is concealed in so-called
TEXT_STYLE tags which represent, at a first glance, attributes of the out-
put of written data rather than information about their linguistic properties.
This can be seen in the example given in table 1 which shows the ETA file
structure that corresponds to the NT passage illustrated in figure 5: All tags
beginning with T such as <Tmge16> or <Tgr16> mark a certain “text
style” that is defined by the use of a special font (e.g., Mxedruli-Georgian),
together with its size (e.g., 16pt) and other attributes such as regular or
italicised style. Via a FONT declaration, the same tags further refer to a
LANGUAGE definition which is the basis of the language-specific
retrieval. The latter information is not stored in the ETA file itself, though,
but in a special Style Include File (SIF) which is required by the preindex-
ing process. Lastly, the LANGUAGE definition may comprise information
about a special keyboard assignment as well as the sorting order to be
adapted for the data in question; these data are stored in extra files again
(LST files). This complex system of interrelated information items is
completed by the definition of text levels which is stored in the ETX file.
Cf. tables 2 to 5 and figures 6 to 7 where some elements are illustrated
(note that direction is part of the FONT declaration).



376 Jost GIPPERT

Table 2: TEXT_STYLE definition

...
TEXT_STYLE mge16

FONT georgian-mcxeta
INDEX_FLAG on
FONT_POINTSIZE 16
TEXT_COLOR [0 128 0]

[255 255 255]
END

TEXT_STYLE mge22
FONT georgian-mcxeta
INDEX_FLAG on

...

Table 3: FONT declaration

...
FONT georgian-mcxeta

FONT_NAME Titus Mxedruli
FONT_FAMILY roman
CHAR_SET ansi
PITCH proportional
DIRECTION left-to-right
FONT_TYPE TrueType
LANGUAGE Oldgeorgian
END

FONT greek
...

Table 4: LANGUAGE definition

...
LANGUAGE Oldgeorgian

LANGUAGE_ID GEORGIAN
CHARACTER_MAP Georgian
TEXT_STYLE mge16
LST_FILENAME GEORGICA.ETX
END

LANGUAGE Greek
LANGUAGE_ID GREEK
CHARACTER_MAP Greek
TEXT_STYLE grx16

...

Table 5: Keyboard definition

...
CHARACTER_MAP Georgian

MAPS 201=144 230=145
198=146 244=147 246=148
242=149 251=150 249=151
255=152 214=153 220=154
162=155 163=156 165=157
199=128 252=129 233=130
226=131 228=132 224=133
229=134 197=143 131=159
225=160 237=161 243=162
250=163 241=164 ...

Figure 6: Definition of sorting order Figure 7: Definition of text levels



Language-specific encoding in multilingual corpora 377

Once this information has been established, it can be used by the pre-
indexing program for processing. The resulting information, consisting of
language-specific indexes of word forms, is then available for immediate
retrieval via a so-called “word wheel”, i.e. a look-up menue which dis-
plays the contents of the indexes in the respective script and alphabetic
order of the language in question as defined in the LST file (cf. figures 8
to 12 showing the word-wheels for Georgian, Armenian, Syriac, and
Greek, with a focus on the words meaning “Father”). This search engine
meets further requirements of linguistic retrieval by enabling its user to
extend the search to other preindexed texts collected in a “library”, to
group (inflected) word forms pertaining to one lemma together, to investi-
gate into grammatical features (provided these were prepared for indexing
by entering appropriate tags) or to search for word forms that appear side
by side within a certain distance and/or within certain levels of the text.

As to multilingual texts (or corpora, in the sense outlined above), the
facilities provided by the WordCruncher system are not very elaborate yet.
Even in the present release, it is possible, however, to formulate a cross-
linguistic search such as the one indicated in figure 13. In this example,
the search object is a context in which the Greek vocative p<ater, the
Armenian hayr, and the Georgian mamao, all meaning “father”, occur
within the same verse. The result we expect to find is Mt. 6,9, but other
contexts such as Mt. 26,42 will be found as well. Of course, this is not
sufficient for an automatical generation of complete lists of the correspon-
dences that exist between individual items of “parallel” texts, but it may
give a first idea of where further investigation might be necessary.

Figure 8: Georgian “word wheel” Figure 9: Armenian “word wheel”



378 Jost GIPPERT

Figures 10-11: Syriac “word wheels”: Transcription vs. original script

Figure 12: Greek “word wheel” Figure 13: Mixed language retrieval

Returning to the question of encoding, it has to be stated that the
system used by WordCruncher is rather disadvantageous with respect to
multilingual corpora. It is at least two features that must be mentioned
here. First, the system is clearly surface-oriented, with language tagging
being unseparable from (and even dependent on) script tagging. Although
this feature did not prove to be impedient when the WordCruncher system
was adopted to the requirements of the TITUS project, a data base consist-
ing of more than 1 GB of mono- and multilingual corpora in Indo-Euro-
pean and adjacent languages5, it will pose serious problems when the data

5 Cf. GIPPERT (1996) for a detailed description and http://titus.uni-frankfurt.

de/texte/texte2.htm for up-to-date information.



Language-specific encoding in multilingual corpora 379

are to be converted into another format such as an SGML or XML tagged
structure. The same holds true for the second disadvantage which consists
in the fact that the present 8-bit basis does not allow for a unique and
consistent encoding of several scripts, let alone languages. A multilingual
corpus such as the one illustrated above is, in its WordCruncher represen-
tation, characterised throughout by so-called “font mapping” which means
that a given byte value (e.g. #97) is used for different purposes (e.g., Latin
a, Greek a, Armenian a, or Georgian a) depending on the actual font (cp.
table 1). As a result of this, it is hardly possible to recover the intended
structure whenever portions of the text are to be exported. In my personal
view, the principle of font mapping, typical for WYSIWYG applications,
has proved to be the most disastrous circumstance of 8-bit encoding with
respect to data exchange, and time is ripe indeed to get rid of it.

With the 16-bit standard of UNICODE approaching its completion,
a radical solution for this problem seems to be close, all the more since
the unique encoding of 65,536 characters it implies can already be used to
a certain extent in an 8-bit based environment6. It remains doubtful, how-
ever, whether the requirements I have exemplified above will indeed be
met by Unicode implementations in near future.

Let us look at the Aog emadaēcā manuscript again to see what prob-
lems we have to face when trying to use Unicode for the encoding of
multilingual text documents written in several ancient scripts. The first
problem consists in the fact that two of the scripts involved, viz. Avestan
and Middle Persian-Pahlavı̄, are not and will not be part of the 16-bit
Unicode standard proper (while Devanāgarı̄ is). They are planned for
storage in the so-called “surrogate area” instead which requires a 4-byte
encoding and which is not accessible at present in any environment.

6 The two leading WWW browsers, Netscape Navigator / Communicator and Micro-
soft Internet Explorer, have implemented Unicode support in their latest versions (4.0 and
higher). What they process is not plain Unicode encoding, however, but a 7-bit or 8-bit
transformation of it (UTF-7 and UTF-8). The capabilities of handling the data further
depend on the operating system: By now, only MS-Windows 95, 98 and NT (4.0 and
higher) are fully Unicode-compatible. For details cf. http://titus-uni-frankfurt.
de/unicode/unitest2.htm which contains links to several sample pages; many texts of
the TITUS data base are also available in UTF-8 format, cf. http://titus-uni-frank-
furt.de/texte/texte2.htm .



380 Jost GIPPERT

Furthermore, there is no way yet to cope with the problem of script
direction involved here: Although Arabic or Hebrew scripts have been
included in the standard, the automatic handling of script directions which
is declared to be the task of “rendering engines” that interpret and process
the encoding7, has not yet been implemented. The same holds true for the
switching between different variants of characters (isolated, initial, central,
and final, depending on the context) which is a typical feature of the
Arabic script but also of Pahlavı̄: Unicode, by its structure, provides an
encoding for basic “character” values only, not for variants that are
regarded as “glyphs”, leaving the task of selection to “intelligent fonts”
or “rendering engines” again8.

A similar problem is met with when Devanāgarı̄ is to be processed.

Figure 14: Devanāgarı̄ encoding in Unicode

Here, too, the encoding provided by Unicode is confined to basic charac-
ters, which in the case of Indic scripts means syllabic units like ≤', ”@, or
ê@, i.e. ka, pa, and bha (cf. figure 14 showing the Unicode block in ques-

7 According to the Unicode standard, the encoding must be in left-to-right order in all
cases. This means that right-to-left direction is a matter of the output only.

8 It is true that for Arabic, a large number of “glyphs” have been included as encod-
able units among the so-called “presentation forms” (Unicode blocks FB00 to FEFF).
Their usage is not recommended, though, because it violates the basic encoding principle.



Language-specific encoding in multilingual corpora 381

tion). When used for languages such as Sanskrit, however, Devanāgarı̄

Table 6: Devanāgarı̄ ligatures

≤≤' ≤≤¤@ ≤∫@ ≤∫⁄@ ≥' ≥¤@ ¥' ¥¤@ μ' ≤Œ@ ∂' ∂¤@ ≤”@ ≤”⁄@ ≤é' ≤é¤@ ≤ÿ@ ≤ÿ⁄@ ≤¤@ ∑' ∑¤@ ∏' ∏¤@ á' á¤@

k@ k…@ k◊@ k◊⁄@ k⁄@ kô@ ≤Ê@ ∫⁄@ ªz- ªC@ ª–@ ª–⁄@ ªw@ Û@ Û⁄@ ªè@ ªÉ@ ªê@ ªê⁄@ ª◊@ ª◊⁄@ ª⁄@ l@ l⁄@ ªò@ ªô@

Ω@ º◊@ º⁄@ m@ h- æ\≥' æ\k@ æ\kô@ ßı ß‹@ ®ı ®›@ ©ı ©‹@ ™ı æ\m@ æ\æ- æŸ@ ´ı

¿@ øo- øo¤@ øq- ør- ø◊@ ø⁄@ o¤@ q- q¤@ r- ¡¡@ ¡t@ ¡¡ô@ ¡¬@ t@ t⁄@ ¡◊@ ¡⁄@ s@ ¡ô@

ƒ@ ƒ⁄@ √o- √q- ú@ ú◊@ ú⁄@ √¬@ √„@

b- â\â- â›@ â\ô@ â\Â@ Δ›@ dı eı «\«- «›@ »›@ gı ]ı …â- …Δ- …«- …»- ……@ …◊@ …⁄@ …ô@

Ñ≤' À@ À⁄@ Ã@ Àô@ ÑŒ@ Õ@ Õ⁄@ Ñ”@ Ñc@ Ñc⁄@ Ñé' Ñ◊@ Ñ◊⁄@ Ñ⁄@ j@ j⁄@ u@ ÑÂ@ Ñ¯@ Ñ¯⁄@ ÑÂ⁄@ Ñx@

Œ⁄@ Aı /ı ?\ ?‹@ E\ œFS\ Gı G‹@ Hı H‹@ Dı D‹@ Xı [ı Zı Z‹@ œŸ@ C@ R\ R›@ S\ S‹@ œF¨@ f@ –◊@ –⁄@ —@ w@

“Ñ@ “Ñ⁄@ “õ@ “ÑÂ@ “Œ@ “z- “Gı “R\ “S\ “–@ “–⁄@ “—@ “w@ p@ p⁄@ “”@ “c@ “é' “◊@ “⁄@ “ô@ “Â@

a@ a⁄@ v@ Ó@ ””@ ”é' ”◊@ ”⁄@ c@ †@ ”Â@ é¤@ èº@ è¡@ èz- è–@ èw@ èè@ èê@ è⁄@ É@ £@ ê⁄@ ¢@ êô@

•@ ◊”@ ◊c@ ◊è@ ◊è⁄@ ◊ê@ ◊¢@ ◊◊@ ◊⁄@ §@ ¶@

⁄⁄@ ⁄ô@ ò≤' òª@ ò”@ ò◊@ ò⁄@ òò@ òô@ òÁ- ô⁄@ ¨@ ‡@ È@ È⁄@ Í@ Í⁄@ „◊@ „⁄@ Î@ Î⁄@ Ï@ Ì@ Ì⁄@ „„@

‰≤' ‰∑' Ô- Ô›@ Ò- Ò›@ Úı Ù- Ù›@ Q- ‰…@ ‰…⁄@ ‰”@ ‰c@ ‰◊@ ‰⁄@ ‰ô@

Â≤' Â∑' Â∫@ ÂÑ@ ÂÑ⁄@ Âõ@ Âu@ ÂŒ@ ÂŒ⁄@ ¯@ Â”@ Âc@ Âé' Â◊@ Â◊⁄@ Â⁄@ ˆ@ x@ Â@ ¸- ËŸ@ Ë‹@ ˚- ˝- ˛-

comprises a huge set of additional signs, mostly ligatures representing
consonant clusters and the like; cf. table 6 where the most frequent ones
are listed. As long as no rendering engine for Devanāgarı̄ exists, there is
no way to reproduce a Unicode-encoded Sanskrit text in a typographically
acceptable form in its original script without violating Unicode prescrip-
tions9.

This means that for languages like Sanskrit, Avestan, or Middle
Persian, the encoding of original scripts will remain difficult, if not im-
possible, for a certain period of time, and projects dealing with these lan-
guages, such as the TITUS data base, are better advised to stick to tran-
scriptional solutions instead. But even then they will meet with consider-
able problems when trying to adopt Unicode encoding.

First of all, the transcription of Indic, Iranian and many other lan-
guages requires a lot of diacritic combinations that are not used in stan-
dardized Roman alphabets and are therefore not encodable as such, i.e., as

9 In the Sanskrit sample pages accessible from http://titus.uni-frank-

furt.de/unicode/unitest.htm#samples , the problem was solved by assigning one
block of the so-called “user definable area” (Unicode E900-E9FF) to Devanāgarı̄ glyphs
of the indicated type.



382 Jost GIPPERT

“precomposed characters”, in Unicode. In these cases, we have to employ
the method of encoding basic characters and diacritics separately (i.e., as
sequences such as s + ˇ + ´ for ´̌s), which may pose serious problems for
“rendering engines” or “intelligent fonts” again when the relative posi-
tioning of the items is concerned (cf. figures 15 and 16 showing a text
passage from the Avestan Hōm-Yašt, Yasna 9,3, containing transcriptional
Avestan, Middle Persian, Pazend and Sanskrit, in both 8-bit and 16-bit en-
coding).

The treatment of diacritic combinations is indeed a weak point in the

Figure 15-16: Y. 9,3 in 8-bit (WC) and 16-bit encoding (UTF-8 HTML)

concept of Unicode. By offering more than one possibility of encoding for
characters like ä or š which can be treated both as “precomposed charac-
ters” and as combinations consisting of a + ¨ or s + ˇ, Unicode paves the
way for arbitrary decisions that are diametrically opposed to the principle
of “unique encoding”. Furtheron, Unicode does not, at least in its present
state, distinguish diacritics in any way according to their function, the
outer shape being taken as their basic property only. Thus it is not poss-
ible to differentiate the subscript dot that appears in ˙s as rendering the
Sanskrit retroflex [S] sound (cf. Devanāgarı̄ ‰@ = ˙sa), from the dot below
used in manuscript editing for denoting uncertain readings (cf. sunufata-
rungo ˙s in the TITUS edition of the Old High German Hildebrandslied,
figure 17). Moreover, the diacritics that have been included as such in
Unicode (cf. figure 18 showing the block in question) were obviously
intended not to be script-dependent; this means that one and the same



Language-specific encoding in multilingual corpora 383

“diaeresis” (¨) would have to be

Figure 17: Passage from Hildebrandslied

used for Latin-based ä or f̈, Greek
ë, Cyrillic |̈, and maybe also for ï
which would represent Pahlavı̄ y.
It goes without saying that this
must lead to typographically unac-
ceptable results, at least as long as
special rendering engines are not
available. Lastly, the stock of
diacritics that have been incorpor-
ated is by no means complete for
Latin-based transcription systems,
let alone other uses. This may well be due to the fact that, at least for
parts, Unicode encoding schemes were created not on the basis of thor-

Figure 18: Unicode block containing diacritics

ough investigation into the necessities of the languages and scripts con-
cerned but by mixing existing standards with accidental collections. To
overcome this state, the TITUS project has started to build up a data base
where diacritics and diacritic combinations appearing in scientific publica-
tions are stored so that they can be used for a documentation which will
hopefully lead to an extension of the Unicode standard. At present, this
data base is being prepared for interactive usage via the WWW (the URL
will be http://titus.uni-frankfurt.de/unicode/unicsel/
unicsel.htm; cp. figure 19 showing the provisional template).



384 Jost GIPPERT

Another problem which the

Figure 19: TITUS interactive data base
of diacritic combinations

use of Latin based transcriptions
instead of original scripts brings
about, consists in the fact that no
inherent indication of the lan-
guages involved is available in
this case if Unicode is applied. It
is of course true that language
encoding has never been an objec-
tive of Unicode, the target of
which are scripts and characters,
and it is merely accidental that
some scripts are clearly, or even
uniquely, related with certain
languages. For a true language-specific encoding, it will therefore remain
necessary to provide explicit tagging even in a Unicode environment.

References

GIPPERT, Jost (1996): TITUS – Alte und neue Perspektiven eines indogermanistischen
Thesaurus. In: Studia Iranica, Mesopotamica & Anatolica 2, 1996 [1997], 49-76.

— (1997): Multilingual text retrieval: Requirements and solutions. In: Studia Iranica,
Mesopotamica & Anatolica 3, 1997 [1998], 75-93. Preliminary version in: R.
COOPER / T. GAMKRELIDZE (eds.), Proceedings of the Second Tbilisi Symposium on
Language, Logic and Computation, Sept. 16-21, 1997, Tbilisi 1998, 106-118.

HARTUNG, Johannes Gabriel (1659): TEDH LWBOI WNIA IKALM TAWBN VSPS HARM XWKIW
:AIBNH WHILA AWBI RWES sive de Eliæ, quem Judæi etiamnum frustrà præstolantur,
adventu dissertatio, ex Malach. IV, 5.6. Jenæ: Literis Samuelis Krebsii.

HUTTER, Elias (1599-1643): Novum testamentum Domini nostri Jesu Christi, Syriace,
Ebraice, Graece, Latine, Germanice, Bohemice, Italice, Hispanice, Gallice, Anglice,
Danice, Polonice. Nürnberg.

JAMASPASA, Kaikhusroo M. (1982): Aog emadaēcā. A Zoroastrian Liturgy. Wien: Verlag
der Österreichischen Akademie der Wissenschaften (Sitzungsbericht, phil.-hist.Kl.,
397. / Veröffentlichungen der Iranischen Kommission, 11.)


		2012-01-02T16:43:22+0100
	Jost Gippert




