Achtung!
Dies ist eine Internet-Sonderausgabe des Aufsatzes
,Linguistic documentation and the encoding of textual materials*
von Jost Gippert (2005).
Sie sollte nicht zitiert werden. Zitate sind der Originalausgabe in
Essentials of Language Documentation,
edited by Jost Gippert, Nikolaus P. Himmelmann, Ulrike Mosel,
Berlin / New York: de Gruyter 2006 (Trends in Linguistics, 178), 337-361
(chapter 14)
Zu entnehmen.

Attention!
This is a special internet edition of the article
“Linguistic documentation and the encoding of textual materials”
by Jost Gippert (2005).
It should not be quoted as such. For quotations, please refer to the original
edition in
Essentials of Language Documentation,
edited by Jost Gippert, Nikolaus P. Himmelmann, Ulrike Mosel,
Berlin / New York: de Gruyter 2006 (Trends in Linguistics, 178), 337-361
(chapter 14).

Alle Rechte vorbehalten / All rights reserved:
Jost Gippert, Frankfurt 2011



Linguistic documentation and the encoding
of textual materials

Jost Gippert

Introduction

In the documentation of languages, the notation of textual materials in writ-
ten form has always played a significant role, even after the development of
audiovisual means of storage. The digital age has brought about but a
minor change in this respect in that we can now expect our written data to
be usable by many people and for many centuries without necessarily being
printed and distributed as books. To reach this aim, a few preliminaries
must be kept in mind, however, which will be addressed in this chapter.

Writing down textual materials in digital form is different from using a
pencil and a sheet of paper as it presupposes the adaptation of clearly de-
fined codes in a twofold sense: the encoding of characters, i.e., of the
letters in the words to be written down, and the encoding of the elements of
textual structure, i.e., of headlines, examples, vocabulary lists, etc. Both
kinds of encoding are crucial for the exchange of data with other people: A
future user who has no information on what encoding schemes you may
have applied will probably have great difficulties in trying to re-decode
(and read) what you wrote — in the worst case, your data will be totally
irretrievable. In the following pages, I shall briefly explain why this is to be
expected and what can be done to avoid it. We will start with the encoding
of the smallest units of text, i.e. characters, and proceed to larger elements
such as words, phrases, and syntagms. Other types of encoding that may be
at issue here (esp. file encoding) will be addressed en passant.

1. TheEncoding of Characters: From 7-Bit to 32-Bit
1.1. Mainframe computers: The ASCII age

In all modern digital equipment, the encoding of characters is based on a
given set of correspondances of characters with numerical values, every



338  Jost Gippert

character being represented by one unique value. To encode the two times
26 letters (lower and upper case) of the Latin alphabet plus the digits from
0 to 9, the punctuation marks, parentheses and the like, a set of less than
100 unique values is necessary, and this is why the ,,stone age” mainframe
computers of the 1960s to 1970s were based on a so-called 7-bit encoding:
With 7 bits, 2"= 128 characters can be encoded uniquely. The most popular
standard developed on this basis is the so-called ASCII standard
(“American Standard Code for Information Interchange”), cf. Table 1.

Table 1. Standardized 7-bit encoding (ASCII)

0 1

012345678901234567 829
000
020 P “#9% % &'
040 () *+, - . /1 0123456789 : ;
060<=>?@ABCDEFGHIJKLMNO
08OPQRSTUVWXYZ[\]A_ " "abec
10de fghijklImnopqgrstuvw
120xy z { | } ~

012345678901234567 829

0 1

It is clear that on the basis of this encoding scheme, English texts could
easily be digitized, but German, French, or Spanish texts could not, let
alone Greek, Russian, or Chinese texts in their original scripts. This does
not mean, however, that it was impossible then to process texts in “exotic”
languages. What was necessary was the invention of encoding schemes that
used more than one digital unit to represent certain characters. Cp. Table 2
which shows the 7-bit adaptation of a Sanskrit text, the Rigveda, which was
produced in the 1970s on a mainframe computer, with the “traditional”
transcription added for comparison. It is clear that this encoding had at least
two disadvantages: it was hardly possible to visualize the text as it should
be on a computer screen, which resulted in lots of inputting errors, and the
encoding was not transparent (or “self-explaining”) in the sense that the
individual items (letters, diacritics, accent marks) could have been easily



Linguistic documentation and the encoding of textual materials 339

determined by somebody who was not involved in the encoding process
themselves. It is true that this encoding met the condition of being consis-
tent in that a given sequence of codes always represented the same charac-
ter, and this is why these texts can be used and analyzed even today. Never-
theless, it was too clumsy to be maintainable for a longer period.

Table 2. Non-standard 7-bit encoding (Rigveda 7,1)

R700123011 AGNI!M+ NAIRO DI:D)ITIB)IR ARAIN\YOR HAISTACYUT!I:
JANAYANTA PRAS=ASTA

R700123012 IM/ DU:RED9!S=AM+ GOHAIPATIM AT)ARYU!M

R700123021 TAIM AGNI!IM AISTE VAISAVO NY 9&N\VAN SUPRATICAIKS\AM
AIVASE KUITAS= ClI

R700123022 T/ DAKS\A:YYO YO! DAIMA A:ISA NIITYAH-

R700123031 PRE!DD)O AGNE DI:DIHI PURO! NO! 'JASRAYA: SU:RMYA:&
YAVIS\T\)A / TVA:!

R700123032 M+ S=AIS=VANTA UIPA YANTI VA:IJA:H-

1 agnim ndro didhitibhir ardnyor hastacyuti janayanta prasastam /
diredisam grhapatim atharyuim

2 tam a,gm'm aste vdsqvo ny ruvan supraticdaksam avase kitas cit /
daksayyo yo dama asa nityah

3 préddho agne didihi guro' né 'jasraya sirmyd yavistha / tvam

sasvanta upa yanti vajah

1.2. PCs, Macs, DOS, and MS Windows: 8-bit based standards and non-
standards

With the extension of the ASCII encoding basis to 8 bits, this problem was
at least partially overcome. On an 8-bit (= 1-byte) basis, 2° = 256 characters
can be encoded uniquely, and since the early 1980’s, many 8-bit encoding
schemes were developed and applied, adding ,,special® characters such as
those representing the German “umlaut vowels” d, o, i, the accented vow-
els ¢, a, 6 etc. of French, or the Spanish palatal nasal, 7i, to the inventory.
Unfortunately, this was not done in an equal, “standardized” way right from
the beginning; instead, several leading computer companies developed their
own individual schemes, which resulted in serious problems whenever data
were to be exchanged between systems. Compare Tables 3-5 which show
the encoding systems used in IBM / DOS computers, Mac computers, and
MS Windows — only the latter one is more or less identical with the 8-bit



Jost Gippert

340

Table 3. Non-standard 8-bit encoding (“DOS/IBM”, “Extended ASCII”, “Code-

page 4377)

1

2 345 6 7 8 9

0
2 3 45 6 7 8 9 0

1

3 @ & 8 x

1

0

© & ¥V ¢ & 4

000

# $ % &
2 3 456 7 89

— AV

0

Pl e

)

*

020 T §
040

1

/

? @A BCDTE F G H
80 PQ RS T UV WXY Z

100 d e

)

(

>

060 <

J K LMNDO

[

9

f

RURE= s T

S o L3 |k
OO0 o5 F

a© o =

t e

~8=Zz=F I

—_—l
-

—ul e ==
—<< > F I

N :<C 0 ==

> e =

|,aJ|&

120 x
140
160
18
0

2 3 45 6 7 8 9 01 2 3456 7 8 9

1

0

Table 4. Non-standard 8-bit encoding (MAC OS)

2 34 56 7 8 9 01 234586 7 8 9

1

0

000
020

# 8 % &

2 3 45 6 7 8 9

)

J K LM NDO

0 1

/

2?7 @A BCDTEF GH

)

(

040
060 <

>

[

080 P Q RS T UV WXY Z

2 ©

> :©

— (O -

» @©

— ) =

o :0
Q7

O W

35

<3

é

140 a ¢

Al

«

vi

+H o

/ N

Do

8 m >

y fi

<

220
240

2 3 45 6 7 8 9

2 3 4 5 6 7 8 9 0 1

1

0



Linguistic documentation and the encoding of textual materials 341

standard used in web environments up til now, the ANSI standard (““Ameri-
can National Standards Institute”) also known as ISO standard no. 8859-1
(the special MS-Windows characters are displayed on a grey background
within Table 5).

Table 5. Standardized 8-bit encoding (ANSI, ISO-8859-1, MS-Windows, Code-

page 1252)
0 1
0 123 4 567 89 012 3 45¢6 7 8 9
000
020 by #8 % &
040 ( ) *+ , - . / 01 2 3 4 5 67 8 9 : ;
060 < =>? @ ABCDETFGH I JKL M NDO
080 P QRS TUVWXY Z2 [\ 1 ~_ a b c
100 d e f g h i j k I m n op q r s u v w
120 x y z { | } ~ ., f . ..t % S <«
140 CE ., Y o — -7 ™ &, e Y
160 i ¢ £ XX ¥ | § © « 7 - ® " ° x 2z 2
180 ° w T - , " ° » Y% ¢ AAAAA A EC
200 E EEE T I T 7T BHNOOOOOx@ U UU
220 U Y PR a 44 a a aa=ceé é ¢é&é i1 i 17
240 6 A 0606 6 806 + g U U G U y p Yy
0 123 4 567 89 012 3 45486 7 8 9
0 1

Still, these encoding systems were not sufficient for the immediate encod-
ing of other scripts such as Greek, Cyrillic, or Chinese. This is why from
the middle of the 1980s on, so-called “code pages” were developed for 8-
bit based computers, in which, just as in the examples shown above, the
“upper” area exceeding the basic ASCII plain (values above 128) was used
to encode various other character sets. Some of these code pages have been
standardized within the ISO standard 8859; cf., e.g., Table 6 contrasting the
Cyrillic code page ISO 8859-5 with the ANSI standard, ISO 8859-1.



342  Jost Gippert

Table 6 a/b. Standardized 8-bit mapping: ISO-8859-1 vs. ISO-8859-5

a. b.

32 D, #8%& " ()*+,-. /1 47 32 VL#S%& ! () r+, - 47
48 0123456789:;<=>7? 63 48 0123456789 :;<=>7? 63
64 @ABCDEFGHIJKLMNO 79 64 @QABCDEFGH I JKLMNO 79
80 PQRSTUVWXYZ[\]*_ 9 80 PQRSTUVWXY ZJ[\]A*_ 9
9 "abcdefghijklmno 11 96 "abcdefghi jkIimno 111
M2 pgrstuvwxyz{|}~ 127 112 pgrstuvwxyz {]|} ~ 127
160 i¢ERY¥Y ! § ©%«~ ® 175160 EBIES | T J/bHLRK: - YII 175
176 ° 23"y q - "°»%U%%¢ 191 176 ABBTOEX3 UM KNIMHON 191
192 AAAAAAECEEEET 1117 207192 PCTY®X UYWL bblb3OA 207
208 DNOOGOOO x@UUUUYPR 223 208 a6Braexs3uWin KIMHORM 223
224 adadadaxeceéééliiTi 239224 pcTydbxuvyww bblbatosa 239
240 0AN06060 O +gUUOUYDPY 255 240 Neéfhrfes i i jmuwhk§yuy 255

Apart from these “official” extensions, an unknown amount of local or
even personal 8-bit encoding systems were developed since the early 1980s
to meet the needs of languages and linguists. As a matter of fact, whenever
somebody developed and applied a certain font the encoding of which did
not match one of the standardized code pages, a new encoding system was
created from scratch. Applying the method of “font mapping”, we could
thus meet, e.g., the requirements of Ancient (“Polytonic”) Greek to be
noted in original characters as well as Iranian languages to be rendered in a
scholarly Latin transcription (cp. Tables 7-8).

The problem about all this is that whenever “font mapping” is applied,
the basic requirement of documentation, viz. the persistence and recover-
ability of data, cannot be guaranteed as there is no unique one-to-one-
relation between the character to be encoded and a given digitized value. If,
e.g., we applied the Greek 8-bit font illustrated in Table 8, the value of 231
would represent a Greek lower case letter pi (w); the same value would
stand for a Cyrillic cha (1), however, if we used a font matching the stan-
dard codepage ISO 8859-5, and it would represent a Latin ¢ with cedilla (¢)
if we used the plain ANSI standard. This means that whenever an 8-bit en-
coding is applied in the encoding of textual materials, additional informa-
tion must be stored as to what code page or font encoding is valid for a
given character — this information, however, is not encodable as such in a



Linguistic documentation and the encoding of textual materials

Table 7. Non-standard 8-bit encoding: Ancient (“polytonic”) Greek

000
020
040
060
080
100
120
140
160
180
200
220
240

0

o1 2 3 45 6 7 8 9 0 1 2 3 4

[o T

>

=

o oy

§
)
1
Q

&

= -

ca

=

O

@

ce Cp @

N

= o= n

> & = c >

o= ™ =

=

> =8 S

Table 8. Non-standard 8-bit encoding:

000
020
040
060
080
100
120
140
160
180
200
220
240

¥ oo g A

—>

=

i)

E=1

[V TR R U N

—_

q

N @ @

= D M S ~  UQ

ey

w

c >

—-

Nc<

[¢R

=

=

] s 2 N0

ey

~

x O <o

Latin

— Ne >< U o

—c

7Y

J:

< m -

38

5 < m

N m N s

o

=

0w

—_ SN

-

—c

<

-

W < B <

«

6

o

S

2

= ©

A~ T B,

1

ot = =11}

e

(e} o>

o

(e

=

(o]} o

—r

343



344  Jost Gippert

standardized way, and it gets lost all too easy when data are transferred
across systems. One example may suffice to illustrate this effect which
would be hazardous for a long-term storage of textual materials.

1.3. Conversion and the loss of data: An example

Table 9a shows the first ten lines of a Svan folk song, digitized in the early
1980s in a DOS environment with a special font covering the requirements
of the Latin transcription of South Caucasian languages. Encoded as a plain
text, with no additional information whatsoever on the font, i.e., the encod-
ing used, the text would have appeared as displayed in Table 9b on the
DOS “system” screen, and the recovery of what symbol stands for what
character would have been a hard task indeed. Imagine a linguist working
in 200 years time who would not have any other information on the lan-
guage in question (which may well have died out by then — Svan is among
the languages dealt with in our DoBeS project “Endangered Caucasian
Languages in Georgia”),' he or she would have no chance to restore the
“values” of the crucial “characters” and thus to reestablish the text itself.

Table 9 a/b. Font mapping in 8-bit encoding: Svan sample text

a. b.
1 vo3 gal sabirelo Nuarsala! 1 volM [tal sabirelo Nuarsala!
2 Musvrasi tubas esgari, 2 MuQvraQi Nubas es|Hri,
3 sgobin lazxvidax Colsare, 3 sgobin laMxvidax ~olQare,
4 min 3ixaldax si moktare, 4 min Mixaldax si morptare,
5 esran irix min amxvare. 5 esran irix min amxvare.
6 ka lazSadax ec¢xdn-amxdn, 6 ka lamoldax e—x&n-amxan,
7 meqrir Sagasugv e3lazix, 7 meqgrar Qlrasulv eMlaMix,
8 cu lastaxix Musvra tubas. 8 —u laMndxix MuQvra Nubas.
9 Davberxo lekva esqadds, 9 Davberxo lekva estadés,
10 Davbrar gorars xocqanalix: 10 Davbrar tnrars xoctanalix:
11 lomsare sgozix musgvrisa. 11 1dmQare sgoMix muQgvriQa.



Linguistic documentation and the encoding of textual materials 345

1.4. Unicode: Towards a world-wide standard

What, then, is the way out of this problem? The answer is clear: To be able to
uniquely encode all characters that have been used in writing down human
languages (including both “national” scripts and alphabets and linguistic
“metascripts” such as the International Phonetic Alphabet), the basis of
encoding must be extended far beyond the 1-byte (8-bit) standard. This is
exactly what has been undertaken since the early 1990s when the so-called
“Unicode” standard was created: Based on 16 bits (or 2 bytes), this stan-
dard comprises 2'® = 65536 basic “code points” used for the “unique” en-
coding of characters. Considering that for the Chinese script alone, far more
than 65,000 different characters have been used throughout history, it is
clear that even this standard is not yet sufficient to cover all characters used
by mankind at all times. A further extension is envisaged, however, in the
32-bit standard ISO 10646 which provides a total of (2** =) 4,294,967,296
code points; as a matter of fact, the Unicode standard is but one subset of
this “infinite” inventory, just as the ANSI standard (ISO 8859-1) is a subset
of Unicode and the ASCII standard, a subset of ANSI (cp. Figure 1).

S
| 7-bitAasen | o i-f \2\
\Ea 2 |
P \
},/’ | 8-hit ISO 8859 1
3 |
a {1‘
P Vs
Y
/ N
L— i
i}
; |
| —
16-bit UNICODE ‘ fl '
]
5 - J
e
B
oo,

il 32-bit 130 10646

Figure 1. From 8-bit to 32-bit encoding



346  Jost Gippert

Along with the expansion of the World Wide Web, Unicode encoding has
become more and more prominent since the late 1990s, and it is the encod-
ing basis of more and more up-to-date operating systems and word proces-
sors. There can be no doubt that this is a huge advantage for the purposes of
linguistic documentation. Cf., e.g., Tables 10a and b which show a few
of the “blocks” of Unicode characters: the distinction of a Cyrillic cha (1)
and a Latin ¢ with cedilla (¢) is now guaranteed by their different code
points (hexadecimal number 0447 = decimal 1095 vs. hexadecimal 00E7 =
decimal 231), and various Latin-based characters used in transcription sys-
tems can now as well be encoded as characters of the Greek, Georgian, or
Chinese scripts.

Table 10 a/b. 16-bit encoding: Unicode blocks Latin and Cyrillic

a. b.
01234567 89ABCDEF 012345678 9ABCUDETF
000 040 EEBIres1 iJ BHBRK UV I
001 041 ABBTIEX3UWUUWUKIMHOI
002°?! ,#$ %&"' () *+, - ./ 02PCTVO XIUUIIIDB BIL 3104
0030 123456 789:; <=>? 043a 6Brgexs3u K IJIM HO II
004 @ABCDEF GHI JKLMNO 044 pc Tyd xu 9ymmb bl b 3 10 5
005 P QRSTUV WXYZ[\] ~_ 045¢ ébhresiij mwmhetk nyuy
006  abcdef ghijklmno 046@wbBbsICrAsAm Xx EXx3 3
007pgqrstuv wxyz{]|}~ 07T }yOeVVYVVYs Q0@ &AW
008 048 C ¢ + D= s HWAab s Rp
009 049T r ¥rE 5 XKx3 Kk K k Kk
00A i¢ &gy | § 02 «—- ® OAAKxHuHelbpbQ e C¢ T 1 Yy
00B° %23 " - 12 »Y%i 0BYyXxTIudalahh©€e®e
00CAAAAAAZECEEEEI T I T 04C1 K%Ky Jln Hy Hy Uuau MM
0DPNOOOOO x@UUUUYP B 04DAa Ada ExE &0 o8 5 K %3 3
0O0Ea 4adddeceééceiiii OAEZ 3 NalluOo666 663 5Vy
OOF3 nd6606006 +puttaiypy 0MFVy VyUau Bl &
0123456 789ABCDEF 012345678 9 ABC DEF

In passing it may be noted that Unicode was not the first attempt to prevent
the chaos of 8-bit font mapping by 16-bit encoding. As early as 1988, the
word processor WordPerfect 5.0 was introduced which comprised a set of
1632 uniquely encodable characters, among them Greek, Cyrillic, and



Linguistic documentation and the encoding of textual materials 347

Japanese (hiragana and katakana) sets, plus a block of 255 “user defin-
able” entities. In this way, WP 5 encoded texts may meet the requirements
of unique character encoding even today, and it should be possible to keep
the information they contain intact when transferring these texts into the
Unicode standard. Unfortunately, the WP encoding system was not widely
used and the opportunities it offered were mostly ignored; thus we cannot
expect the automatic conversion routines for WP 5 texts offered by, e.g.,
MS Word 2000 to correctly interpret and re-encode any one of the non-
standard characters that may be contained in them. Cf. Table 11, which
illustrates what happens when the Svan folk song we have dealt with above
(cf. Table 9) is consistently encoded in WP 5 and then automatically con-
verted into a MS-Word text. It is especially the replacement of “unidenti-
fied” characters by an undifferentiated underline score (_) which makes the
conversion result unusable and irrepairable. The same holds true for the
automatic conversion provided by later versions of WordPerfect itself (e.g.,
WP 9); here, we find a replacement of, e.g., o by B, which is at least con-
fusing. This all means that a correct conversion of WordPerfect 5 encoded
texts (or, at least, of the characters contained in them) into Unicode encod-
ing is possible, but it still requires special programming.

Table 11 a/b. Automatic text ,,conversion®: Svan example

1 vo_ Yal sabirelo Nuarsala!
2 Musvrasi _ubas esY ri,

3 sgobin la_xvidax olsare,

4 min _ixaldax si mo_tare,

5 esran irix min amxvare.

6 kala_s dax e...xdn-amxdn,
7 meqrir s _asuYve la_ix,

8 ..ula__ xix MuSvra ubas.

9 Davberxo lekva es_adis,

10 Davbrar Crars xoc_analix:

11 [ mSare sgo_ix musgvrisa.

1 vod gal sabirelo Nuarsala!
2 Musvrasi Mubas esgBri,
3 sgobin laAxvidax volsare,
4 min Aixaldax si modtare,
5 esran irix min amxvare.
6 ka laAsBdax ecxin-amxdn,
7 meqrdr SBiasugv edladix,
8 cu laAMBxix Musvra Mubas.
9 Davberxo lekva esiadis,
10 Davbrar iorars xocianalix:

11 IBmsare sgodix musgvrisa.



348  Jost Gippert

1.5. Coexisting standards: The worst case scenario

The question now is, are we really on the safe side after Unicode has be-
come the world-wide basis of character encoding? To be honest, there are
still quite a lot of puzzling problems to be solved, not only with respect to
the conversion of older material. The major problem lies in the fact that for
the time being, digital word processing is characterized by the actual co-
existence of 16-bit and 8-bit encoding systems. Just as the 8-bit ANSI stan-
dard was integrated into the 16-bit Unicode standard as one of its “blocks”,
all Unicode-based word processors such as MS Word 2000 have been de-
signed to be ready to handle 8-bit encoded texts alongside 16-bit encoded
ones. In the same way, Unicode-based operating systems such as MS Win-
dows 2000 have been designed to be able to incorporate 8-bit encoded fonts
side by side with 16-bit encoded ones. A few examples may suffice to show
what confusion this may bring about.

Table 12a displays the fragment of a Georgian verb list which was typed
in MS Word 6, using a plain 8-bit based Georgian font mapped onto the 8-
bit ANSI encoding scheme. When I received this text file from a colleague
in Georgia via e-mail two years ago, | tried to open it in MS Word 2002
(XP Office). The result was funny, to say the least: What appeared on the
screen was a text in Japanese katakana script instead (cp. Table 12b). When
I opened the text in Open Office 1 instead, another result appeared: The
Georgian characters were now replaced by Latin characters with diacritics
(cf. Table 12c¢), which was a foreseeable result bearing in mind that the
original encoding was 8-bit based. After applying the correct Georgian font
to this text within Open Office, the intended look (as in Table 12a) reap-
peared, and the text could even be re-mapped onto a transcriptional font
which used the same 8-bit code points (cf. Table 12d). Trying to apply the
Georgian font to the “Japanese” looking output of MS Word 2002 changed
nothing, however; the katakana characters remained katakana characters
(as displayed in Table 12b).



Linguistic documentation and the encoding of textual materials 349

Table 12 a-d. Automatic text “conversion”: Georgian example (wordlist)

a. Original text (MS Word 6)

0020010M gos@gomgds (goswgowgd-olss) 0020020M 850865761900 (g058657M93-0lss)
0020030M 25335 (8503-0lso) 0020040N  gsao-o (aog-obs)

0020050M ga08905 (go890-0lss) 0020060P  goa907em-o (goagdge-olss)
0020070M ga0a85360 (goa8556-0lso) 0020080N  gsa85560-0 (a088556-0lss)

b. Same text after cross-version transfer (MS Word 6 > MS Word 2002)

0020010M Y4371 /ENFR (V547N - JE2)  0020020M YRAZASIXNFR ((VBAZAS3ANF - /T4 )

0020030M YJ45F7% ( V4F7 - JT%) 0020040N 7J49% - & (V47 - JI%)
0020050M JAYNFA (VRIMNF - JE4) 0020060P Y4YMFIL - / (V4IMFIE - JTR)
0020070M YRYZEFAR ( YRIZHIA - JE5) 0020080N VAYZSFAR - & ( VAYZAFA - JE5 )

c. Same text after cross-program transfer (MS Word 6 > Open Office 1)

0020010M AAAAAEEAAA (AAAAAEEAA- 0020020M AAAZIAOOAAA (AAAEIAOOAA-

EOA) EOA)
0020030M AAAIA (AAAL-EOA) 0020040N AAAA-T (AAA-EOA)
0020050M AAAAAA (AAAAA-EOA) 0020060P AAAAAOE-E (AAAAAOE-EOA)

0020070M AAAZAAIA (AAAZAAI-EOA)  0020080N AAAZAAIA-1 (AAAZAAL-EOA)

d. Same with different font-assignment (within Open Office 1)

0020010M gaadvileba (gaadvileb-isa) 0020020M gaaznaureba (gaaznaureb-isa)
0020030M gabma (gabm-isa) 0020040N gaga-j (gag-isa)

0020050M gageba (gageb-isa) 0020060P gagebul-i (gagebul-isa)
0020070M gagzavna (gagzavn-isa) 0020080N gagzavna-j (gagzavn-isa)

How can this odd behaviour of MS Word be explained? Obviously, the
program executes a five-step strategy when it encounters texts encoded by
other (older) versions:



350  Jost Gippert

— it first checks whether the document is Unicode-encoded;

— if not, it checks whether the character distribution might meet the “typi-
cal” distribution of one of the known codepages;

— if yes, it assumes that codepage to be represented;

— it converts the 8-bit characters of the assumed codepage into the
equivalent characters of Unicode;

— it stores the Unicode characters in memory.

Reapplying the original 8-bit fonts can then be no remedy if they do not
meet the Unicode encoding assumed, as in the given case where a “Japa-
nese” codepage was assumed to be present.

1.6. Persisting non-standards: The Private Use Area

One other problem that may be crucial even in Unicode times is the persis-
tence of at least one area that is designed for font mapping. This is the so-
called “Private Use Area” (PUA) which comprises 6144 non-predefined
characters in the blocks EOOO-EFFF and FOOO-F7FF. Quite like the “user
definable area” of WordPerfect 5, it can be assigned ad libitum by compa-
nies, user groups, or individuals, with the result that additional information
is necessary to distinguish the characters “encoded” in it. Table 13 shows
what can happen when a wrong font is applied to visualize PUA encoded
characters; in the worst case, the intended information will again be lost.

Table 13 a/b. 16-bit font mapping: The “Private Use Area”

a. b.

0123456 789ABCDEF 0123456789 ABCDEF
ESO . ! ()«» 2 ", ** - - . E80
3 = T A I ECRCa e g
Eg2 = "7 = SRR (L R TR

E83 saiutadbtabiy o a4 E83 & KU BB ™47 A2 BE®E
E84 155,20 3 aas 5 ovorwa E84 35 B M2 UT HE WS WS B B BT WL B 4 AL
E85 ¢ 4 £3885 S S&3 3 s & 55 E85 [ 4 [ [/ 5 #5 B 60 6F 65 &G M 09 28 B 8
E86 S&¥3 )1 19%y 43 4 35 E86 MR ME & . « o o . . ..

E87 55 6084 $yee®ai i sy EB7

E88 $ YNy 2 E88
E89 E89
ESA E8A -

0123456789ABCDEF 0123456789 ABCDETF



Linguistic documentation and the encoding of textual materials 351

1.7. Suggestions and recommendations

As far as character encoding is concerned, all this leads to a few general
recommendations that may be helpful with respect to both data exchange
and long-term archiving of textual materials:

— Wherever possible, be sure to use 16-bit encoding, not 8-bit encoding;

— 1ifusing 16-bit encoding, avoid addressing the Private Use Area.

— If 8-bit encoding is required, try not to mix up several fonts with a dif-
ferent encoding in one and the same document;

— always keep track of what font-and-encoding you are using;

— always inform the receivers about all this and provide the fonts (if le-
gally possible).

Archivers should be even more rigid:

— They should convert all 8-bit documents into 16-bit Unicode docu-
ments and
— they should not use the Private Use Area for the encoding of characters.

But how to produce 16-bit encoded texts? As we have seen, the most com-
mon word processors of today are designed to handle both 8-bit and 16-bit
encodings. Using MS Word 2002 under MS Windows XP and typing with
a “national” keyboard as provided by the operating system, you can be
quite sure that what you type will be stored in 16-bit encoding. If, however,
you want to add some characters from, e.g., an IPA font, by using the sym-
bol insertion menu, you should check whether the Unicode value given for
the character in question matches the respective code point of Unicode or
not — if not, the font you intend to use is most probably 8-bit encoded. As a
matter of fact, MS Word 2002 does allow for mixtures of 8-bit and 16-bit
encodings within a given text document — which may turn out to be the
worst case as far as data exchange and storage is concerned. Problems may
also occur when you use special keyboard drivers supplied by third parties
such as Tavultesoft Keyman: These may have been designed for 8-bit en-
coding alone, giving you no chance to enter 16-bit encoded text with them.
If you intend to design your own keyboard driver with Keyman or with the
MS Keyboard Layout Creator, be sure to use Unicode encoding as its basis.
Note, by the way, that the SIL Shoebox program was exclusively 8-bit
based; it interacted well with Keyman drivers, but also only on an 8-bit
basis. The newly developed Toolbox now is Unicode-based and should
work well with 16-bit based Keyman layouts.



352  Jost Gippert

2. Theencoding of text elements:
Surface appear ance vs. content markup

2.1. Text structure visualized

Let us now turn to the second topic of this chapter, viz. the encoding of the
structural elements of texts. To clarify what this means, it is helpful to look
again at the Svan text we have dealt with above (cf. Table 9). Even without
any knowledge of the language, we will immediately have the impression
that this text consists of verses. This is clearly indicated by two signals we
are used to in reading poetical texts, viz. the relative shortness of lines, and
the numbers (from 1 to 11) given to each line. There are many further ele-
ments of textual structure involved, however. First, we will easily guess
that the text consists of five sentences, partially extending across verses and
partially consisting of subordinate clauses: This is indicated by the punctua-
tion marks used. Then, we will be able to state that the text consists of 38
words, in their turn indicated by either empty spaces or punctuation marks
adjoining their first and last characters.

2.1.1. The basic elements

This may all sound trivial, but as a matter of fact, it can be crucial indeed
for the documentation of textual materials to consider and markup their
internal elements when preparing them for future usage, and this should be
done as consistently as the encoding of the characters appearing in words.
So what elements are we talking about? Among the basic elements of every
kind of text, we have already mentioned words (consisting of characters
when written down), phrases, clauses, sentences; on a higher level, we will
meet sections, paragraphs, chapters, text parts and the like. For many of
these elements, we intuitively adapt signals we have been used to since we
were at school, such as spaces indicating word boundaries, full stops indi-
cating sentence breaks, or “hard” line breaks indicating the end of a section
or paragraph. For a consistent encoding of a digital text, this may not be
sufficient, though. Another example may suffice to illustrate why.



Linguistic documentation and the encoding of textual materials 353

2.1.2. An illustrative example

In Table 14, we see a specimen from an 18th century grammatical treatise
in Georgian, digitized using MS Word 6. Without even a faint knowledge
of the Georgian script, a reader may guess that the first line of the text is a
heading, given that it obviously consists of but one word, is centered on the
line and seems to be represented in a bold face font. As to the other lines of
texts, the reader will as easily suspect that this is an interplay of questions
and answers, the former being clearly indicated by question marks. One
more suggestion might impose itself: as the first word of every question
and answer is separated by a colon and marked by an extra spacing of char-
acters, and as these words are repeated throughout questions and answers,
they might indicate the names of people speaking (as in a theater play). All
these assumptions are correct: we do have an interplay of questions and
answers, uttered by two different persons here (one loane, one Nikolaoz),
and the first line is the heading (it simply means “On grammar”). The rea-
son why it was so easy to find all this out is that here again, marking meth-
ods were applied that we are used to in reading — centering of lines, usage
of boldface, spacing of characters, etc. For computational purposes, how-
ever, these markings, which we may call surface-oriented, are arbitrary
and insufficient in a twofold sense.

Table 14. Georgian text specimen

©A3ddsB0obsmzgl

0msbgd: mmbbo  0go 335660  dmdmgzegdombo,  GMIgembacys
391900390056, 059000930196056 M350 3oL

bogmmaombdsb: M 56 150763(;3360 domo?

0msbgd: 296LsB@3M90s, 206§ 386905, smdMBbs s semg3..
bogmmombBdab: 330moe Msa Logds® sl (36mda?

2.1.3. Program features vs. standards

First, the centering of lines may be a common feature of all existing word
processors today, but it is by no means standardized: The encoding of this
feature simply depends on the program structure. To illustrate what this



354  Jost Gippert

means, Table 15 shows a part of the internal code of the given MS Word
document. Here we detect the word contained in the heading (Georgian
06533530 30bsm30L “On grammar”, stored in 8-bit form ) at the end of
what appears to be a sixth line, followed by a “clear text” form of the ques-
tions and answers. There is no indication adjoining the “head” word that it
must be centered or boldfaced, and none that it represents a heading. All
this must be inferred, by the interpreting program, from the unreadable
code preceding it (or from a similar looking block of coding elements
added at the end of each MS Word document). Imagine somebody were to
decode this document in 200 years time, without having any access to the
internal program code structure of MS-Word 6 — he or she would certainly
not be able to extract anything from it but the “plain text”, and all the addi-
tional information contained in the centering of lines and boldfacing of
words would be lost (as a matter of fact, many of us have witnessed this
effect when trying to open MS Word documents of the 1980s in later ver-
sions). The same would be true for the “spaced” characters indicating the
speakers in the text: the spacing is here, too, covered by a program-internal
function and would be lost together with the knowledge of the code. It
would not be a good idea, by the way, to avoid this latter effect by inserting
the character spaces manually instead of using the word processor function
for it: if, as we have seen above, we use spaces to distinguish words from
each other, the spaced name [ O A N E would automatically appear as five
words (consisting of but one character each) to any computational analysis,
and it could not be found when searching for “IOANE”.

Table 15. Program-specific encoding of Georgian text specimen

Dlajxyayyyyyyyyyyyyyyyyyyvvvvyyyyyyyyvvvyyvyy
YYYYyyyyyIIIVyyyyyyyIVAYDYCYYIYVYYYIIYATYYYY AYYYYYD

YYYyyyy ByyyyyAYYyYYYFyyyMicrosoft Word 6.0 Documentyyyyyyyyyyyyy
yyyMSWordDocyyyyWord.Document.65092qyyyyyyyyyyyyyyyyyyyyvyyyyyy

VY AVYYYY AYIVIYBATYY AYYYYY AYYYYY@AYCAWORKDIR\TEMPLATE\NORMAL.DOTYY
YYYUAYYYYY BYYYyYDBYY yyyhBYyyyyCEBYYYYYYYYYURAMMACIEISATWS

IOANEM: OTXNI IGI GVARNI MO%UVREBITNI, ROMELNICA ,[EUdGEBIAN,
dAEMJEVREBIAN URAMMACI+ASA.

NIOLAOzMAN: RAJ ARS SAXELEBI MATI?

IOANEM: GANSAZUVREBA, GANAVALEBA, AUMO/EENA dA AULEVA.
NI+OLAOzMAN: *VALAd RAJ SAQMAR ARS CNOBAd?

IOANEM: ESE, VITARMEd GOELI RAM ARSOBITI M+ITX-ELI SAZUVARS E%IEBS.
NI+OLAOzMAN: MERMEd RAJ SAQMAR ARS CNOBAJ?



Linguistic documentation and the encoding of textual materials 355

2.1.4. What you see is NOT what you get

What, then, can be done to avoid a loss of the information concerning the
structuring of texts and their elements? First, we should get rid of an ideal
in text processing which has become very widespread these days, viz.
“WYSIWYG”: “What you see is what you get”. It may be true that the text
you type in on your computer today will look quite the same on the screen
and in a printout, but all this is restricted to a very ephemeral use: the next
generation of users of your text may have no access to the sophisticated
codings of your word processor and will thus “get” anything else but what
you “saw”. Second, we should give up the idea that the use of mere printing
devices (such as boldfacing, spacing of characters, and the like) might be
enough to indicate the function of text elements. Instead, we should adapt
ourselves to what may be called “content markup” whenever our texts are
meant to be stored for documentation purposes.

2.2. A half-way solution: HTML

In recent years, the marking up of text elements has indeed become more
and more widespread especially by the expansion of the World Wide Web
and the prescription to use a certain unified text encoding structure, the so-
called Hypertext Markup Language (HTML), for documents to be provided
in it. Tables 16 a and b show the Georgian text specimen converted into a
plain HTML text (as source code and visualized with a standard web
browser); here, you will easily find the markup devices corresponding to the
centering and boldfacing of the heading, viz. the markers <p align=center> ...
</p> and <b> ... </b>. What you will miss is the special markup of the
speakers’ names; this cannot be present as the spacing of characters is not
markable as such in HTML. But even if it were (actually, so-called “cas-
cading style sheets”, CSS, can be used for this purpose), it would be no
good idea to use this kind of markup alone — future users might hardly grasp
the idea what it stands for as the spacing of characters has no standardized
meaning. In the same way, it remains unclear what the centering and the
bolding of the first line is to indicate — that this is a heading remains a mere
guess. As a matter of fact, the markup provided by HTML contains but very
few “content” elements. One is the group of markers from <H1> to <H6>
which should be used to denote several levels of headings. In our case, it
would be much better to mark our heading with one of these elements (re-



356  Jost Gippert

placing <p align=center> ... </p> by <hl align=center> ... </h1> ) — the

outer appearance would then be secondary and adaptable to future uses.

Table 16a. Plain HTML encoding of Georgian text specimen

<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text /html;
charset=is0-8859-1">
<TITLE>Grammatika</TITLE>
<META NAME="KeyWords" CONTENT=,Georgian Grammar"“>
</HEAD>
<BODY >
<DIV>
<P ALIGN:”CENTER“><B>ﬁRAMMA°IiISATWS</B></P>
</DIV>
<DIV>
<P><SPAN>IOANEM: </SPAN><SPAN>OTXNI IGI GVARNI
MO%ﬁVREBITNI, ROMELNICA ,EUJGEBIAN, JdAEMdEVREBIAN
URAMMA°I+ASA.</SPAN></P>

<P><SPAN>NI+OLAOzMAN: </SPAN><SPAN>RAJ ARS SAXELEBI

MATI?</SPAN></P>

<P><SPAN>IOANEM: </SPAN><SPAN>GANSAzUVREBA,
GANAVALEBA, AUMOEENA dA AULEVA.</SPAN></P>
<P><SPAN>NI+OLAOzZMAN: </SPAN>+VALAd RAJ SAQMAR ARS
CNOBAd?</SPAN></P>

</DIV>
</BODY>
</HTML>

Table 16b. Browser output of Georgian HTML text specimen
06333580 30bs0z b

0msb93: mmbbo 0go 335660 dndm3z@gdomba, Memdgembacys g7 gd0sb,
©59900936190056 3335035,

6030eemB3sh: s @b Lsbgemgda dsomon?

0msbgd: a9bLsBEgMnds, 96§ 3semnds, smdmBgbs s semga.
603mememBash: 335emer Ga bgdst sl (36mdsw?



Linguistic documentation and the encoding of textual materials 357

2.3. Real content markup: XML

The more information of this type is to be encoded, the less will HTML
markup suffice. For a consistent markup of the contents of a text, you will
have to go one step further and adapt the eXtensible Markup Language,
XML (a derivate of the Standard Generalized Markup Language, SGML).
This alone will allow you to provide for future users all the knowledge you
might have on the text materials you are working on. In an XML markup,
you will easily be able to declare not only the heading of the text as its
heading but also the speakers as speakers, their utterances as questions and
answers relating to each other, and any other text element that might be
useful to define. Table 17 shows the Georgian grammar example provided
with a minimal XML markup; you will easily note the difference as against
the HTML markup which consists in the meaningfulness of the tags.

<?xml version=,1.0“ encoding=,utf-8“?>
<part>
<pnum>1</pnum>
<chapter>
<cnum>1</cnum>

<heading>Ms38s@030LsonzL</heading>

<utterance>
<unum>1</unum>
<utype>question</utype>
<speaker>bo3mmsmbdsb</speaker>
<sentence>
<snum>1</snum>
<item>
<inum>1</inum>
<itype>word</itype>@sa</item>
<item>
<inum>2</inum>
<itype>word</itype>stL</item>
<item>
<inum>3</inum>
<itype>word</itype>Lsbymgdo</item>
<item>
<inum>4</inum>
<itype>word</itype>dsomo</item>
<item>
<inum>5</inum>
<itype>question mark</itype>?</item>
</sentence>
</utterance>



358  Jost Gippert

<utterance>
<unum>2</unum>
<utype>answer</utype>
<speaker>omsbyd</speaker>
<sentence>
<snum>1</snum>
<item>
<inum>1</inum>
<itype>word</itype>gsbLsbmztgds</item>
<item>
<inum>2</inum>
<itype>comma</itype>,</item>
<item>
<inum>3</inum>
<itype>word</itype>gs6§3smods</item>
<item>
<inum>4</inum>
<itype>comma</itype>,</item>
<item>
<inum>5</inum>
<itype>word</itype>s0dmbhgbs</item>
<item>
<inum>6</inum>
<itype>word</itype>gos</item>
<item>
<inum>7</inum>sm3myas</item>
<item>
<inum>8</inum>
<itype>full stop</itype>.</item>
<item>
</sentence>
</utterance>

</chapter>
</part>
</text>

2.4. XML in language documentation: Going beyond plain text encoding

Of course, all kinds of analyses of linguistic units such as words and phrases
can also be included in an XML markup, and this is the real advantage it
has for the documentation of languages. You can be sure that future users
will hardly be interested in sharing the surface beauty of a text document;
what they will be interested in is as much information about the language as
you can provide. For many years, linguists have used the Shoebox program
for the purpose of noting down and annotating texts they collected during



Linguistic documentation and the encoding of textual materials 359

their fieldwork, and for many of us the facilities offered by this program,
especially the half-automatical process of interlinearization, is indispensable;
cp. Figure 2 which exhibits a sample sentence in the Tsova-Tush or Batsbi
language of the Caucasus®. The basic idea of interlinearization as provided
by Shoebox consists in the vertical arrangement of interdependent annota-
tion layers (tiers); these can include, as in the present example, different
transcriptions and transliterations (here: Georgian script, Latin script, IPA),
morphological analyses, the reference to lemmatic forms, translations of the
lemmatic forms, etc. The Shoebox format is not sufficient in the sense of a
thorough markup, though, as it has two disadvantages: the encoding used is
still 8-bit based so that the correct display depends on the interpretative
functions of the program; cf. Table 18 which shows the same Shoebox text
when opened in a normal text editor. While the latter disadvantage has re-
cently been overcome by the introduction of the Toolbox program, the
Unicode-compatible successor of Shoebox 5.0, the second disadvantage
remains: the interdependencies of the vertically aligned elements is not
marked as such in a Shoebox / Toolbox text but depends on the interpreta-
tion of spaces between words. This is where XML markup would help:
Only after the conversion of the Shoebox file into a Unicode based XML
schema as the one displayed in Figure 3 can we be confident that all the
information stored in the document will be accessible to later users for a
long time.

= 0485 1

\per | A3

\trs Prz]‘h"cp ?i'zps 5.)503(‘1(‘)35 &)3 n\:{ﬁ Bn;;?‘.as, 33 ,3.5?1&.)5 [ga.};[gns[gmt_ﬂ\vn.
Wl [fwmy  fuit ranigoret aq deg mlat me vasbat dabdiedol®

\pho [t fu® nanigore™ tfag dets” xita® me wafba® dethdftsdal™

s P\'ﬂbﬂg '3305 Eaﬁnamﬁvas Ro3 QSE 160(_:"1‘_)5 Ba 3.:'3&:5 Qo}ggqﬁmgvgu
sl |Gumuy  Suit nanigore® caq dee mla? me vaska® dahdiedol’

\mo [Zux-uy  Buit nan--gore® Eaq d-ec xila® me vaiba® dah-dic-d-ol-°
yml | fumuy  Sui® nan-i-gore® éaq d-eg il me vasta? dal-die-d-ol-*
\Im ok Bup® [ LX) reafs boprfa 8 5o readreagyeres”
Al |uyz Sui® nan faq deca® milat me vaska® dahdicoda®

g Bxh 3o owgolo mgEs B ls Lisgotho_s goebagormagobs  Hed o8B g reogoGggds

‘gl |batkani tavisi deda fors safiro_a Qopnadolakona  rom ertmanet davicgeba

gl larnb WL rmother distant  to-be-necessary  to-beto-have that each_other  to-forget

\p NA4Gr. ReflPron. N.2Gr. Adv. V. V. Conj.  Recipr.Pron. V.

gr Nom.Pl. indecl. Loc.Pl+Postp. indecl. Pres4Gr. Inf. indecl. indecl. Cond.4CL3Ps.
\fgy B3¢46730 ersg0ba gegdalipsb el by ayghab, Gums grmdsbgomo mssgalymaen.

Mgl | batknebi tavisi dedebisgan Sors unda iqvnen, rata ertmaneti daavicqdet.

e The lambs must be apart from their mothers fo forget them.

\c 33 09:29:50

\dt 24/ Apri2005

Figure 2. Shoebox text file with interlinearized annotations



360  Jost Gippert

Table 18. Same example as in Figure 2, viewed in normal text editor

\ref 0485

\per AS

\trs Auxuy éuix nanigorea Aaq deA xiUax, me vaébar dabdicdolt.

\tl1 Auxuy éuix nanigorex Aaq deA xiUan me vaébax daBdicdolt

\ph tfSuxuj Sui< nAnigore< tfSAq detfs' xiAA< me VASbA< dAdditfsdolW

\ts Auxuy &uia nanigorex Aaq deA xiUar me vaéban daBdicdolt

\ts1 Auxuy éuia nanigorexn Aaq deA xiUax me vaébax dabdicdolt

\m Aux-uy éuia nan-i-gorex Aaq d-eA xiUax me vaéban dab-dic-d-ol-t

\m1 Aux-uy éuia nan-i- goren Aaq d-eA xiUan me vaébarn dab-dic-d-ol-1

\Im Aujx éuix nan Aaq deAax xiUan me vaébax dabdicodax

\Im1 Aujx éuix nan Aaq deAax xiUar me vaébarn dabdicodan

\g baiOani tavisi deda éors saAiro_a gopna,cola,kona rom ertmaneti daviAgeba

\g1 baiOani tavisi deda éors saAiro_a gopna,gola,kona rom ertmaneti daviAgeba

\gl lamb own mother distant to-be-necessary to-be,to-have that each_other to-forget
\p N.4Gr. ReflPron. N.2Gr. Adv. V. V. Conj. Recipr.Pron. V.

\gr Nom.P!. indecl. Loc.Pl.+Postp. indecl. Pres.4Gr. Inf. indecl. indecl. Cond.4Cl.3Ps.
\fg baiOnebi tavisi dedebisgan &ors unda icvnen, rata ertmaneti daawAgdet

\fg1 baiOnebi tavisi dedebisgan &ors unda igvnen, rata ertmaneti daaviAgdet.

\fe The lambs must be apart from their mothers to forget them.

\c 33 09:29:50

= firstobject XML Editor - [SHEPHERD XML]

B Fi= Edt View Took Window Help : x|
B lext <7xml version="1.0" encoding="utf-8"7> =
= ng z;nl;r’;ce R
- per
= gg element “zentences
_g i <ref0485</ref>
ey <per=AS<ipers [%
& ph <elements
i :: <enum1<fenum=
i <tl=heplena<iil>
ag <t =uxuy =it =
g = <phauxujiph>
g b <tgrholrma<iss
B-§8} element <mzhyb-po<ims
L smetabsir>
@ g cloment <ag>bachgoBo<iag>
(€3 element =eg=lamb=feg>
[ &2 element <yph> N, 4G <fwb>
7@ <o <>
£ bs <felement>
& fg <elements
] g :51 <enurmE2denums
e e <tl= Bt <ftl>
<t =gl =
<phjun</ph>
<ts=8ymn®<fts>
<m=Benn®<im>
<Im>&pno®</m> =l
Feady ]

Figure 3. Same example as in Figure 2, converted into XML format



Linguistic documentation and the encoding of textual materials 361

2.5. Outlook

It is true that the application of XML is not yet widely used by (fieldwork-
ing) linguists. It is also true, however, that it becomes more widespread
every day, and lots of software programs that are dedicated to the produc-
tion of consistent XML documents are now readily available (cf. the list at-
tached below). No matter whether you intend to apply XML methods your-
self in the near future or not, it may be worth while taking your time and
visiting the website of the “Text Encoding Initiative” (TEI), just to learn
more about what the structuring of textual elements means. Your linguistic
work cannot but profit from this.

Notes

1. “ECLinG”; cf. the project homepage in http://titus.fkidgl.uni-frankfurt.de/
ecling/ecling.htm.

2. The example is taken from the material recorded in the DoBeS “ECLinG”
project; cf. n. 1.

Digital unterschrieben von Jost Gippert
. DN: cn=Jost Gippert, o=Universitadt Frankfurt,
J O St G I e rt ou=Vergleichende Sprachwissenschaft,
email=gippert@em.uni-frankfurt.de, c=DE
Datum: 2011.12.28 00:58:15 +01'00'



		2011-12-28T00:58:15+0100
	Jost Gippert




